Stable subordinators, and more general subordinators possessing power law probability tails, have been widely used in the context of subdiffusions, where particles get trapped or immobile in a number of time periods, called constant periods. The lengths of the constant periods follow a one-sided distribution which involves a parameter between 0 and 1 and whose first moment does not exist. This paper constructs an estimator for the parameter, applying the method of moments to the number of observed constant periods in a fixed time interval. The resulting estimator is asymptotically unbiased and consistent, and it is well-suited for situations where multiple observations of the same subdiffusion process are available. We present supporting numerical examples and an application to market price data for a low-volume stock.
We present two algorithms in the quantum CONGEST-CLIQUE model of distributed computation that succeed with high probability: one for producing an approximately optimal Steiner tree, and one for producing an exact directed minimum spanning tree, each of which uses O˜(n1/4) rounds of communication and O˜(n9/4) messages, achieving a lower asymptotic round and message complexity than any known algorithms in the classical CONGEST-CLIQUE model. At a high level, we achieve these results by combining classical algorithmic frameworks with quantum subroutines. Additionally, we characterize the constants and logarithmic factors involved in our algorithms as well as related classical algorithms, otherwise obscured by O˜ notation, revealing that advances are needed to render both the quantum and classical algorithms practical.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.