Extragalactic background light (EBL) anisotropy traces variations in the total production of photons over cosmic history, and may contain faint, extended components missed in galaxy point source surveys. Infrared EBL fluctuations have been attributed to primordial galaxies and black holes at the epoch of reionization (EOR), or alternately, intra-halo light (IHL) from stars tidally stripped from their parent galaxies at low redshift. We report new EBL anisotropy measurements from a specialized sounding rocket experiment at 1.1 and 1.6 micrometers. The observed fluctuations exceed the amplitude from known galaxy populations, are inconsistent with EOR galaxies and black holes, and are largely explained by IHL emission. The measured fluctuations are associated with an EBL intensity that is comparable to the background from known galaxies measured through number counts, and therefore a substantial contribution to the energy contained in photons in the cosmos.At near-infrared wavelengths, where the large zodiacal light foreground complicates absolute photometry measurements, the extragalactic background light (EBL) may be best accessed by anisotropy measurements. On large angular scales, fluctuations are produced by the clustering of galaxies, which is driven by the underlying distribution of dark matter. EBL anisotropy measurements can probe emission from epoch of reionization (EOR) galaxies (1-3) and directcollapse black holes (4) that formed during the EOR before the universe was fully ionized by exploiting the distinctive Lyman cutoff feature in the rest-frame ultraviolet (UV), thus probing the UV luminosity density at high redshifts (5). However, large-scale fluctuations may also arise from the intrahalo light (IHL) created by stars stripped from their parent galaxies during tidal interactions (6) at redshift z < 3. A multi-wavelength fluctuation analysis can distinguish among these scenarios and constrain the EOR star formation rate.A search for such background components must carefully account for fluctuations produced 2 by known galaxy populations. Linear galaxy clustering is an important contribution to fluctuations on scales much larger than galaxies themselves. On fine scales, the variation in the number of galaxies produces predominantly Poissonian fluctuations, with an amplitude that depends on the luminosity distribution. Anisotropy measurements suppress foreground galaxy fluctuations by masking known galaxies from an external catalog.The first detections of infrared fluctuations in excess of the contribution from known galaxies with the Spitzer Space Telescope (7-9) were interpreted as arising from a population of faint first-light galaxies at z > 7. The Hubble Space Telescope was used at shorter wavelengths (10) to carry out a fluctuation study in a small deep field but did not report fluctuations in excess of known galaxy populations. Measurements with the AKARIsatellite (11) show excess fluctuations with a blue spectrum rapidly rising from 4.1μm to 2.4μm. Fluctuation measurements in a large survey fi...
We present 10 to 18 images of four massive clusters of galaxies through the Sunyaev-Zel'dovich Effect (SZE). These measurements, made at 90 GHz with the MUSTANG receiver on the Green Bank Telescope (GBT), reveal pressure sub-structure to the intra-cluster medium (ICM) in three of the four systems. We identify the likely presence of a previously unknown weak shock-front in MACS0744+3927. By fitting the Rankine-Hugoniot density jump conditions in a complementary SZE/X-ray analysis, we infer a Mach number of M = 1.2 +0.2 −0.2 and a shock-velocity of 1827 +267 −195 km s −1 . In RXJ1347-1145, we present a new reduction of previously reported data and confirm the presence of a south-east SZE enhancement with a significance of 13.9σ when smoothed to 18 resolution. This too is likely caused by shock-heated gas produced in a recent merger. In our highest redshift system, CL1226+3332, we detect sub-structure at a peak significance of 4.6σ in the form of a ridge oriented orthogonally to the vector connecting the main mass peak and a sub-clump revealed by weak lensing. We also conclude that the gas distribution is elongated in a south-west direction, consistent with a previously proposed merger scenario. The SZE image of the cool core cluster Abell 1835 is, in contrast, consistent with azimuthally symmetric signal only. This pilot study demonstrates the potential of high-resolution SZE images to complement X-ray data and probe the dynamics of galaxy clusters.
The Extragalactic Background Light (EBL) captures the total integrated emission from stars and galaxies throughout the cosmic history. The amplitude of the near-infrared EBL from space absolute photometry observations has been controversial and depends strongly on the modeling and subtraction of the Zodiacal light foreground. We report the first measurement of the diffuse background spectrum at 0.8-1.7 µm from the CIBER experiment. The observations were obtained with an absolute spectrometer over two flights in multiple sky fields to enable the subtraction of Zodiacal light, stars, terrestrial emission, and diffuse Galactic light. After subtracting foregrounds and accounting for systematic errors, we find the nominal EBL brightness, assuming the Kelsall Zodiacal light model, is 42.7 +11.9 −10.6 nW m −2 sr −1 at 1.4 µm. We also analyzed the data using the Wright Zodiacal light model, which results in a worse statistical fit to the data and an unphysical EBL, falling below the known background light from galaxies at λ <1.3 µm. Using a model-independent analysis based on the minimum EBL brightness, we find an EBL brightness of 28.7+5.1 −3.3 nWm −2 sr −1 at 1.4 µm. While the derived EBL amplitude strongly depends on the Zodiacal light model, we find that we cannot fit the spectral data to Zodiacal light, Galactic emission, and EBL from solely integrated galactic light from galaxy counts. The results require a new diffuse component, such as an additional foreground or an excess EBL with a redder spectrum than that of Zodiacal light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.