Several reports have demonstrated that cerebral blood flow decreases with age and may contribute to neurodegenerative changes found in aging animals and man. Because GH and insulin-like growth factor 1 (IGF-1) decrease with age and have an important role in vascular maintenance and remodeling, we hypothesized that the decrease in cerebral blood flow is associated with a rarefaction of cerebral blood vessels resulting from a decline in GH and IGF-1. Measurements of vascular density (number of vessels/cortical surface area) in both Brown-Norway and Fisher 344/Brown-Norway rats were made at 5, 13, and 29 months of age using chronic cranial window chambers that allowed viewing of the cortical surface and its corresponding vasculature. Correlations were made with plasma levels of IGF-1. In Brown-Norway rats, arteriolar density decreased from 15.53 +/- 1.08 to 9.49 +/- 0.62 endpoints/mm2 in 7- and 29-month-old animals, respectively (P < 0.05). A decline was observed also in arteriolar anastomoses [3.05 +/- 0.21 to 1.42 +/- 0.24 connections/mm2 in 7- and 29-month-old animals (P< 0.05)]. Venular density did not decrease with age. Similar changes were observed in Fisher 344/Brown-Norway rats. The number of cortical surface arterioles was correlated with plasma IGF-1 levels at the time of vascular mapping (r = 0.772, P < 0.05), and injection of bovine GH (0.25 mg/kg, s.c., twice daily for 35 days) to 30-month-old animals increased both plasma IGF-1 and the number of cortical arterioles. These data indicate that: 1) vascular density on the surface of the cortex decreases with age; 2) vascular density is correlated with plasma levels of IGF-1; and 3) injection of GH increases cortical vascular density in older animals. We conclude that GH and IGF-1 have an important role in the decline in vascular density with age and suggest that decreases in vascular density may have important implications for the age-related decline in cerebral blood flow and brain function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.