Many benefits of cover crops such as prevention of nitrate leaching, erosion reduction, soil organic carbon enhancement and improvement of soil structure are associated with roots. However, including root characteristics as a criterion for cover crop selection requires more knowledge on their root growth dynamics. Seven cover crop species (crimson clover, winter rye, bristle oats, blue lupin, oil radish, winter turnip rape and phacelia) were grown in a two-year organically managed field experiment in Germany to screen them for root intensity and vertical root distribution. Root length density (RLD) and proportion of root length in large-sized biopores were determined before and after winter with the profile wall method. RLD and cumulative root length were analysed using a three-parameter logistic function, and a logistic dose-response function, respectively. Fibrous rooted winter rye and crimson clover showed high RLD in topsoil and had a shallow cumulative root distribution. Their RLD increased further during winter in topsoil and subsoil. The crops with the highest RLD in the subsoil were taprooted oil radish, winter turnip rape and phacelia. Bristle oat had intermediate features. Blue lupin had low RLD in topsoil and subsoil. Phacelia, oil radish, winter turnip rape and bristle oat showed the highest share of root length in biopores. These complementary root characteristics suggest that combining cover crops of different root types in intercropping may be used to enhance overall RLD for maximizing cover crop benefits.
Ground beetles (carabids) constitute an important functional component of biodiversity in agroecosystems, mainly because of their role as predators of pests, but also as consumers of weed seeds and as prey to other organisms. Over the past few decades, there has been a marked and continuous decline of ground beetles in Europe, and many species of this insect family are threatened by intensive agricultural practices. The effect of soil tillage, a standard technique in arable farming, on carabids has been investigated in many experimental studies. However, there is currently no clear and differentiated picture of how ground beetles are affected by tillage operations in direct and indirect ways. In this review, we narrow this gap of knowledge and show that the effects of intensive tillage on ground beetles—especially the use of mouldboard ploughing—are extremely variable. Nonetheless, on balance across multiple studies, greater tillage intensity tends to have a negative effect on abundance, species richness, and diversity. The observed variability may partly be attributed to a change in species-specific food availability or habitat conditions, induced by tillage. Tillage effects on dominant species tend to have a strong impact on total carabid abundance. The high variability of carabid responses to tillage is also a consequence of various modifying factors such as cover cropping, rotations, and variations in weed control associated with tillage. Because different modes of tillage tend to affect different carabid species, the diversification of tillage operations within a farm or region may contribute to the overall diversity of carabid communities.
Different methods have been proposed for in situ root-length density (RLD) measurement. One widely employed is the time-consuming sampling of soil cores or monoliths (MO). The profile wall (PW) method is a less precise, but faster and less laborious alternative. However, depth-differentiated functions to convert PW RLD estimates to MO RLD measurements have not yet been reported. In this study, we perform a regression analysis to relate PW results to MO results and determine whether calibration is possible for distinct crop groups (grasses, brassicas and legumes) consisting of pure and mixed stands, and whether soil depth affects this calibration. The methods were applied over two years to all crop groups and their absolute and cumulative RLD were compared using a linear (LR) and multiple linear (MLR) regression. PW RLD was found to highly underestimate MO RLD in absolute values and in highly rooted areas. However, a close agreement between both methods was found for cumulative root-length (RL) when applying MLR, highlighting the influence of soil depth. The level of agreement between methods varied strongly with depth. Therefore, the application of PW as the main RLD estimation method can provide reliable estimates of cumulative root distribution traits of cover crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.