The Lewis-Clark Valley is a rural area that includes the cities of Lewiston, Idaho and Clarkston, Washington and the surrounding areas. The largest industry in the Lewis-Clark Valley is a pulp paper mill located in Lewiston which emits particulate matter and odorous sulfur air pollutants. This study analyzed the Lewis-Clark Valley air composition and seasonal, temporal and spatial variations of volatile organic compounds (VOCs) from 2017 to 2018 to determine potential health risks of the paper mill emissions to the surrounding community. Both active and passive air sampling via sorbent tubes were analyzed by thermal desorption - gas chromatography-mass spectrometry (TD-GC-MS). Fifty VOCs including benzene, toluene, chloroform, dimethyl sulfide and dimethyl disulfide were measured in the ambient air of the Lewis-Clark Valley at ten different sites, totaling over 800 samples. In addition, passive sorbent tubes were deployed in 2018 to obtain monthly averages in Lewis-Clark Valley and three urban locations in Idaho and Washington for comparison.
United States Environmental Protection Agency (2001)
methodology was used to assess cancer risks in the community based on the upper confidence levels of five carcinogens and nine air toxics. The Lewis-Clark Valley had similar levels of benzene to urban areas but had a strong signature of chloroform and sulfides from the paper mill. The cumulative cancer risk was 2 x 10
−6
- 11 × 10
−6
mainly due to the compounds chloroform, benzene and carbon tetrachloride. The hazard index of other air toxics was less than one. Overall, these air pollutants were considered low risk to the local population.
Fire Influence on Regional to Global Environments and Air Quality was a NOAA/NASA collaborative campaign conducted during the summer of 2019. The objectives included identifying and quantifying wildfire composition, smoke evolution, and climate and health impacts of wildfires and agricultural fires in the United States. Ground based mobile sampling via sorbent tubes occurred at the Nethker and Williams Flats fires (2019) and Chief Timothy and Whitetail Loop fires (2020) in Idaho and Washington. Air samples were analyzed through thermal desorption‐gas chromatography‐mass spectrometry for a variety of volatile organic compounds to elucidate both composition and health impacts. Benzene, toluene, ethylbenzene, xylenes, butenes, phenol, isoprene and pinenes were observed in the wildfire smoke, with benzene ranging from 0.04 to 25 ppbv. Health risk was assessed for each fire by determining sub‐chronic (wildfire event) and projected chronic inhalation risk exposure from benzene, a carcinogen, as well as other non‐carcinogenic compounds including toluene, ethylbenzene, xylenes, and hexane. The cancer risk of benzene from sub‐chronic exposure was 1 extra cancer per million people and ranged from 1 to 19 extra cancers per million people for the projected chronic scenarios, compared to a background level of 1 extra cancer per million people. The hazard index of non‐carcinogenic compounds was less than one for all scenarios and wildfires sampled, which was considered low risk for non‐cancer health events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.