Organisms across the tree of life use a variety of mechanisms to respond to stress-inducing fluctuations in osmotic conditions. Cellular response mechanisms and phenotypes associated with osmoadaptation also play important roles in bacterial virulence, human health, agricultural production and many other biological systems. To improve understanding of osmoadaptive strategies, we have generated 59 high-quality draft genomes for the haloarchaea (a euryarchaeal clade whose members thrive in hypersaline environments and routinely experience drastic changes in environmental salinity) and analyzed these new genomes in combination with those from 21 previously sequenced haloarchaeal isolates. We propose a generalized model for haloarchaeal management of cytoplasmic osmolarity in response to osmotic shifts, where potassium accumulation and sodium expulsion during osmotic upshock are accomplished via secondary transport using the proton gradient as an energy source, and potassium loss during downshock is via a combination of secondary transport and non-specific ion loss through mechanosensitive channels. We also propose new mechanisms for magnesium and chloride accumulation. We describe the expansion and differentiation of haloarchaeal general transcription factor families, including two novel expansions of the TATA-binding protein family, and discuss their potential for enabling rapid adaptation to environmental fluxes. We challenge a recent high-profile proposal regarding the evolutionary origins of the haloarchaea by showing that inclusion of additional genomes significantly reduces support for a proposed large-scale horizontal gene transfer into the ancestral haloarchaeon from the bacterial domain. The combination of broad (17 genera) and deep (≥5 species in four genera) sampling of a phenotypically unified clade has enabled us to uncover both highly conserved and specialized features of osmoadaptation. Finally, we demonstrate the broad utility of such datasets, for metagenomics, improvements to automated gene annotation and investigations of evolutionary processes.
BackgroundDiscovery of functionally significant short, statistically overrepresented subsequence patterns (motifs) in a set of sequences is a challenging problem in bioinformatics. Oftentimes, not all sequences in the set contain a motif. These non-motif-containing sequences complicate the algorithmic discovery of motifs. Filtering the non-motif-containing sequences from the larger set of sequences while simultaneously determining the identity of the motif is, therefore, desirable and a non-trivial problem in motif discovery research.ResultsWe describe MotifCatcher, a framework that extends the sensitivity of existing motif-finding tools by employing random sampling to effectively remove non-motif-containing sequences from the motif search. We developed two implementations of our algorithm; each built around a commonly used motif-finding tool, and applied our algorithm to three diverse chromatin immunoprecipitation (ChIP) data sets. In each case, the motif finder with the MotifCatcher extension demonstrated improved sensitivity over the motif finder alone. Our approach organizes candidate functionally significant discovered motifs into a tree, which allowed us to make additional insights. In all cases, we were able to support our findings with experimental work from the literature.ConclusionsOur framework demonstrates that additional processing at the sequence entry level can significantly improve the performance of existing motif-finding tools. For each biological data set tested, we were able to propose novel biological hypotheses supported by experimental work from the literature. Specifically, in Escherichia coli, we suggested binding site motifs for 6 non-traditional LexA protein binding sites; in Saccharomyces cerevisiae, we hypothesize 2 disparate mechanisms for novel binding sites of the Cse4p protein; and in Halobacterium sp. NRC-1, we discoverd subtle differences in a general transcription factor (GTF) binding site motif across several data sets. We suggest that small differences in our discovered motif could confer specificity for one or more homologous GTF proteins. We offer a free implementation of the MotifCatcher software package at http://www.bme.ucdavis.edu/facciotti/resources_data/software/.
In-source fragmentation occurs as a byproduct of electrospray ionization. We find that ions produced as a result of in-source fragmentation often match fragment ions produced during MS/MS fragmentation and we take advantage of this phenomenon in a novel algorithm to analyze LC-MS metabolomics datasets. Our approach organizes co-eluting MS1 features into a single peak group and then identifies in-source fragments among coeluting features using MS/MS spectral libraries. We tested our approach using previously published data of verified metabolites, and compared the results to features detected by other mainstream metabolomics tools. Our results indicate that considering in-source fragment information as a part of the identification process increases annotation . CC-BY-NC-ND 4.
Opsins are photosensitive proteins catalyzing light-dependent processes across the tree of life. For both microbial (type 1) and metazoan (type 2) opsins, photosensing depends upon covalent interaction between a retinal chromophore and a conserved lysine residue. Despite recent discoveries of potential opsin homologs lacking this residue, phylogenetic dispersal and functional significance of these abnormal sequences have not yet been investigated. We report discovery of a large group of putatively non-retinal binding opsins, present in a number of fungal and microbial genomes and comprising nearly 30% of opsins in the Halobacteriacea, a model clade for opsin photobiology. We report phylogenetic analyses, structural modeling, genomic context analysis and biochemistry, to describe the evolutionary relationship of these recently described proteins with other opsins, show that they are expressed and do not bind retinal in a canonical manner. Given these data, we propose a hypothesis that these abnormal opsin homologs may represent a novel family of sensory opsins which may be involved in taxis response to one or more non-light stimuli. If true, this finding would challenge our current understanding of microbial opsins as a light-specific sensory family, and provides a potential analogy with the highly diverse signaling capabilities of the eukaryotic G-protein coupled receptors (GPCRs), of which metazoan type 2 opsins are a light-specific sub-clade.
BackgroundCross-species comparisons of gene neighborhoods (also called genomic contexts) in microbes may provide insight into determining functionally related or co-regulated sets of genes, suggest annotations of previously un-annotated genes, and help to identify horizontal gene transfer events across microbial species. Existing tools to investigate genomic contexts, however, lack features for dynamically comparing and exploring genomic regions from multiple species. As DNA sequencing technologies improve and the number of whole sequenced microbial genomes increases, a user-friendly genome context comparison platform designed for use by a broad range of users promises to satisfy a growing need in the biological community.ResultsHere we present JContextExplorer: a tool that organizes genomic contexts into branching diagrams. We implement several alternative context-comparison and tree rendering algorithms, and allow for easy transitioning between different clustering algorithms. To facilitate genomic context analysis, our tool implements GUI features, such as text search filtering, point-and-click interrogation of individual contexts, and genomic visualization via a multi-genome browser. We demonstrate a use case of our tool by attempting to resolve annotation ambiguities between two highly homologous yet functionally distinct genes in a set of 22 alpha and gamma proteobacteria.ConclusionsJContextExplorer should enable a broad range of users to analyze and explore genomic contexts. The program has been tested on Windows, Mac, and Linux operating systems, and is implemented both as an executable JAR file and java WebStart. Program executables, source code, and documentation is available at http://www.bme.ucdavis.edu/facciotti/resources_data/software/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.