IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) is a popular routing protocol used in wireless sensor networks and in the Internet of Things (IoT). RPL was standardized by the IETF in 2012 and has been designed for devices with limited resources and capabilities. Open-source RPL implementations are supported by popular IoT operating systems (OS), such as ContikiOS and TinyOS. In this work, we investigate the possibility of battery drain Denial-of-Service (DoS) attacks in the RPL implementation of ContikiOS. In particular, we use the popular Cooja simulator and implement two types of DoS attacks, particularly version number modification and “Hello” flooding. We demonstrate the impact of these attacks on the power consumption of IoT devices. Finally, we discuss potential defenses relying on distributed intrusion detection modules.
Many IoT devices, especially those deployed at the network edge have limited power resources. A number of attacks aim to exhaust these resources and drain the batteries of such edge nodes. In this work, we study the effects of a variety of battery draining attacks against edge nodes. Through simulation, we clarify the extent to which such attacks are able to increase the usage and hence waste the power resources of edge nodes. Specifically, we implement hello flooding, packet flooding, selective forwarding, rank attack, and versioning attack in ContikiOS and simulate them in the Cooja simulator, and measure and report a number of time and power resource usage metrics including CPU time, low power mode time, TX/RX time, and battery consumption. Besides, we test the stretch attack with three different batteries as an extreme scenario. Our extensive measurements enable us to compare the effectiveness of these attacks. Our results show that Versioning attack is the most severe attack in terms of draining the power resources of the network, followed by Packet Flooding and Hello Flood attacks. Furthermore, we confirm that Selective Forwarding and Rank attacks are not able to considerably increase the power resource usage in our scenarios. By quantifying the effects of these attacks, we demonstrate that under specific scenarios, Versioning attack can be three to four times as effective as Packet Flooding and Hello Flood attacks in wasting network resources, while Packet Flooding is generally comparable to Hello Flood in CPU and TX time usage increase but twice as powerful in draining device batteries.
Routing attacks are a major security issue for Internet of Things (IoT) networks utilising routing protocols, as malicious actors can overwhelm resource-constrained devices with denial-of-service (DoS) attacks, notably rank and blackhole attacks. In this work, we study the impact of the combination of rank and blackhole attacks in the IPv6 routing protocol for low-power and lossy (RPL) networks, and we propose a new security framework for RPL-based IoT networks (SRF-IoT). The framework includes a trust-based mechanism that detects and isolates malicious attackers with the help of an external intrusion detection system (IDS). Both SRF-IoT and IDS are implemented in the Contiki-NG operating system. Evaluation of the proposed framework is based on simulations using the Whitefield framework that combines both the Contiki-NG and the NS-3 simulator. Analysis of the simulations of the scenarios under active attacks showed the effectiveness of deploying SRF-IoT with 92.8% packet delivery ratio (PDR), a five-fold reduction in the number of packets dropped, and a three-fold decrease in the number of parent switches in comparison with the scenario without SRF-IoT. Moreover, the packet overhead introduced by SRF-IoT in attack scenarios is minimal at less than 2%. Obtained results suggest that the SRF-IoT framework is an efficient and promising solution that combines trust-based and IDS-based approaches to protect IoT networks against routing attacks. In addition, our solution works by deploying a watchdog mechanism on detector nodes only, leaving unaffected the operation of existing smart devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.