Advances in genomics have expedited the improvement of several agriculturally important crops but similar efforts in wheat (Triticum spp.) have been more challenging. This is largely owing to the size and complexity of the wheat genome1, and the lack of genome-assembly data for multiple wheat lines2,3. Here we generated ten chromosome pseudomolecule and five scaffold assemblies of hexaploid wheat to explore the genomic diversity among wheat lines from global breeding programs. Comparative analysis revealed extensive structural rearrangements, introgressions from wild relatives and differences in gene content resulting from complex breeding histories aimed at improving adaptation to diverse environments, grain yield and quality, and resistance to stresses4,5. We provide examples outlining the utility of these genomes, including a detailed multi-genome-derived nucleotide-binding leucine-rich repeat protein repertoire involved in disease resistance and the characterization of Sm16, a gene associated with insect resistance. These genome assemblies will provide a basis for functional gene discovery and breeding to deliver the next generation of modern wheat cultivars.
Kernel methods are flexible and easy to interpret and have been successfully used in genomicenabled prediction of various plant species. Kernel methods used in genomic prediction comprise the linear genomic best linear unbiased predictor (GBLUP or GB) kernel, and the Gaussian kernel (GK). In general, these kernels have been used with two statistical models: single-environment and genomic • environment (GE) models. Recently near infrared spectroscopy (NIR) has been used as an inexpensive and non-destructive high-throughput phenotyping method for predicting unobserved line performance in plant breeding trials. In this study, we used a non-linear arc-cosine kernel (AK) that emulates deep learning artificial neural networks. We compared AK prediction accuracy with the prediction accuracy of GB and GK kernel methods in four genomic data sets, one of which also includes pedigree and NIR information. Results show that for all four data sets, AK and GK kernels achieved higher prediction accuracy than the linear GB kernel for the single-environment and GE multi-environment models. In addition, AK achieved similar or slightly higher prediction accuracy than the GK kernel. For all data sets, the GE model achieved higher prediction accuracy than the single-environment model. For the data set that includes pedigree, markers and NIR, results show that the NIR wavelength alone achieved lower prediction accuracy than the genomic information alone; however, the pedigree plus NIR information achieved only slightly lower prediction accuracy than the marker plus the NIR high-throughput data. KEYWORDS Genomic based prediction Genomic Best Unbiased Predictor (GBLUP, GB linear and nonlinear kernel methods) near infrared (NIR) highthroughput phenotype single-environment model deep learning genomic • environment interaction model Genomic Prediction GenPred Shared Data Resources In genomic selection (GS) (Meuwissen et al. 2001), Bayesian models were introduced in the context of whole-genome regression and since then have become common in genomic prediction (Gianola 2013). Genomic-assisted selection has the advantage over phenotypic selection that it saves time and resources when making selection by adopting predictive methods and models for complex traits, along with information
Genomic selection is revolutionizing plant breeding. However, still lacking are better statistical models for ordinal phenotypes to improve the accuracy of the selection of candidate genotypes. For this reason, in this paper we explore the genomic based prediction performance of two popular machine learning methods: the Multi Layer Perceptron (MLP) and support vector machine (SVM) methods vs. the Bayesian threshold genomic best linear unbiased prediction (TGBLUP) model. We used the percentage of cases correctly classified (PCCC) as a metric to measure the prediction performance, and seven real data sets to evaluate the prediction accuracy, and found that the best predictions (in four out of the seven data sets) in terms of PCCC occurred under the TGLBUP model, while the worst occurred under the SVM method. Also, in general we found no statistical differences between using 1, 2 and 3 layers under the MLP models, which means that many times the conventional neuronal network model with only one layer is enough. However, although even that the TGBLUP model was better, we found that the predictions of MLP and SVM were very competitive with the advantage that the SVM was the most efficient in terms of the computational time required.
Key message Genomic prediction for seedling and adult plant resistance to wheat rusts was compared to prediction using few markers as fixed effects in a least-squares approach and pedigree-based prediction.AbstractThe unceasing plant-pathogen arms race and ephemeral nature of some rust resistance genes have been challenging for wheat (Triticum aestivum L.) breeding programs and farmers. Hence, it is important to devise strategies for effective evaluation and exploitation of quantitative rust resistance. One promising approach that could accelerate gain from selection for rust resistance is ‘genomic selection’ which utilizes dense genome-wide markers to estimate the breeding values (BVs) for quantitative traits. Our objective was to compare three genomic prediction models including genomic best linear unbiased prediction (GBLUP), GBLUP A that was GBLUP with selected loci as fixed effects and reproducing kernel Hilbert spaces-markers (RKHS-M) with least-squares (LS) approach, RKHS-pedigree (RKHS-P), and RKHS markers and pedigree (RKHS-MP) to determine the BVs for seedling and/or adult plant resistance (APR) to leaf rust (LR), stem rust (SR), and stripe rust (YR). The 333 lines in the 45th IBWSN and the 313 lines in the 46th IBWSN were genotyped using genotyping-by-sequencing and phenotyped in replicated trials. The mean prediction accuracies ranged from 0.31–0.74 for LR seedling, 0.12–0.56 for LR APR, 0.31–0.65 for SR APR, 0.70–0.78 for YR seedling, and 0.34–0.71 for YR APR. For most datasets, the RKHS-MP model gave the highest accuracies, while LS gave the lowest. GBLUP, GBLUP A, RKHS-M, and RKHS-P models gave similar accuracies. Using genome-wide marker-based models resulted in an average of 42% increase in accuracy over LS. We conclude that GS is a promising approach for improvement of quantitative rust resistance and can be implemented in the breeding pipeline.Electronic supplementary materialThe online version of this article (doi:10.1007/s00122-017-2897-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.