This paper proposes a simple and novel approach based on solving a partial differential equation (PDE) to establish the concise analytical formulas for a conditional moment and mixed moment of the Jacobi process with constant parameters, accomplished by including random fluctuations with an asymmetric Wiener process and without any knowledge of the transition probability density function. Our idea involves a system with a recurrence differential equation which leads to the PDE by involving an asymmetric matrix. Then, by using Itô’s lemma, all formulas for the Jacobi process with constant parameters as well as time-dependent parameters are extended to the generalized stochastic correlation processes. In addition, their statistical properties are provided in closed forms. Finally, to illustrate applications of the proposed formulas in practice, estimations of parametric methods based on the moments are mentioned, particularly in the method of moments estimators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.