This paper discusses the interaction of conditions in the liquid metal surrounding the keyhole which is formed when a laser is used as the source of power for welding, with conditions in the vapour itself. The transfer of power and matter across the interface is considered, and a simple model set up for the energy interchange and vapour flow in the keyhole itself. The principal processes are identified. The model is then used to calculate keyhole shapes, and the variation with depth of the related quantities is found.
The conjecture which explains the humping phenomenon in terms of Marangoni convection is discussed and rejected. Instead, Rayleigh's theory of the instability of a free liquid cylinder due to surface tension is applied. The width-to-length ratio of the weld pool has to exceed 1/2 pi to avoid humping. The growth time of a disturbance is found to be approximately the same as the growth time of a hump. The analysis of a bounded cylinder provides a new stability criterion which allows the introduction of a bounding function to distinguish between arc and laser welding. The weld pool dimensions are estimated in terms of a simple heat conduction model. The threshold value predicted theoretically for the travel speed above which humping commences agrees well with the experimental value. It decreases with increasing power, which is in qualitative agreement with experimental results.
An integrated mathematical model for laser welding of thin metal sheets under a variety of laser material processing conditions has been developed and tested against the results of experiments. Full account is taken in the model of the interaction of the laser-generated keyhole with the weld pool. Results calculated from the model are found to agree well with experiment for appropriate values of the keyhole radius. The analysis yields values for power absorption in the metal. In a complementary calculation the total absorption of the laser energy is determined from detailed consideration of the inverse Bremsstrahlung absorption in the plasma and Fresnel absorption at the keyhole walls. To test these results, experiments were performed on 1 mm mild steel using a high-speed video camera, which measured the surface dimensions of the melt pool. Processing parameters were varied to study the effect on the melt pool; parameters considered included traverse speed, laser power and shroud gas species. The general shape of the weld pool was found to depend on whether penetration was full, partial or blind; only the results for full penetration were compared with the theory, which is for complete penetration only.
A mathematical model for the laser drilling of metals is given for the cases of constant and pulsed laser sources. Attenuation of the laser beam within the vapour is considered through an averaged absorption coefficient . The experimentally observed logarithmic dependence of the hole depth on the laser energy is predicted theoretically. A singular perturbation technique is used in order to find solutions valid for different regimes of time, namely pre-vaporization and post-vaporization times. Uniformly valid solutions are found for the one-dimensional analysis of the drilling-front position and speed by matching the inner and outer solutions. First-order approximations for the time-dependent hole profile for the various laser source profiles considered are also found. The model is compared with experimental data in the literature for the drilling speed of copper. An additional set of experiments is specifically carried out to allow comparison with the theoretical hole profiles for titanium. The predictions of the model are found to agree well with the experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.