The physiological state of the brain before an incoming stimulus has substantial consequences for subsequent behavior and neural processing. For example, the phase of ongoing posterior alpha-band oscillations (8–14 Hz) immediately before visual stimulation has been shown to predict perceptual outcomes and downstream neural activity. Although this phenomenon suggests that these oscillations may phasically route information through functional networks, many accounts treat these periodic effects as a consequence of ongoing activity that is independent of behavioral strategy. Here, we investigated whether alpha-band phase can be guided by top-down control in a temporal cueing task. When participants were provided with cues predictive of the moment of visual target onset, discrimination accuracy improved and targets were more frequently reported as consciously seen, relative to unpredictive cues. This effect was accompanied by a significant shift in the phase of alpha-band oscillations, before target onset, toward each participant’s optimal phase for stimulus discrimination. These findings provide direct evidence that forming predictions about when a stimulus will appear can bias the phase of ongoing alpha-band oscillations toward an optimal phase for visual processing, and may thus serve as a mechanism for the top-down control of visual processing guided by temporal predictions.
In auditory-visual sensory substitution, visual information (e.g., shape) can be extracted through strictly auditory input (e.g., soundscapes). Previous studies have shown that image-to-sound conversions that follow simple rules [such as the Meijer algorithm; Meijer, P. B. L. An experimental system for auditory image representation. Transactions on Biomedical Engineering, 39, 111-121, 1992] are highly intuitive and rapidly learned by both blind and sighted individuals. A number of recent fMRI studies have begun to explore the neuroplastic changes that result from sensory substitution training. However, the time course of cross-sensory information transfer in sensory substitution is largely unexplored and may offer insights into the underlying neural mechanisms. In this study, we recorded ERPs to soundscapes before and after sighted participants were trained with the Meijer algorithm. We compared these posttraining versus pretraining ERP differences with those of a control group who received the same set of 80 auditory/visual stimuli but with arbitrary pairings during training. Our behavioral results confirmed the rapid acquisition of cross-sensory mappings, and the group trained with the Meijer algorithm was able to generalize their learning to novel soundscapes at impressive levels of accuracy. The ERP results revealed an early cross-sensory learning effect (150-210 msec) that was significantly enhanced in the algorithm-trained group compared with the control group as well as a later difference (420-480 msec) that was unique to the algorithm-trained group. These ERP modulations are consistent with previous fMRI results and provide additional insight into the time course of cross-sensory information transfer in sensory substitution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.