Chitosan is a well sought-after polysaccharide in biomedical applications due to its biocompatibility, biodegradability to non-toxic substances, and ease of fabrication into various configurations. However, alterations in the anti-bacterial properties of chitosan in various forms is not completely understood. The objective of this study was to evaluate the anti-bacterial properties of chitosan matrices in different configurations against two pathogens-Gram-positive Streptococcus mutans and Gram-negative Actinobacillus actinomycetemcomitans. Two-dimensional (2-D) membranes and three-dimensional (3-D) porous scaffolds were synthesized by air drying and controlled-rate freeze drying. Matrices were suspended in bacterial broths with or without lysozyme (enzyme that degrades chitosan). Influences of pore size, blending with Polycaprolactone (PCL, a synthetic polymer), and neutralization process on bacterial proliferation were studied. Transient changes in optical density of the broth, adhesion characteristics, viability, and contact-dependent bacterial activity were assessed. 3-D porous scaffolds were more effective in reducing the proliferation of S. mutans in suspension than 2-D membranes. However, no significant differences were observed on the proliferation of A. actinomycetemcomitans. Presence of lysozyme significantly increased the antibacterial activity of chitosan against A. actinomycetemcomitans. Pore size did not affect the proliferation kinetics of either species, with or without lysozyme. NaOH neutralization of chitosan increased bacterial adhesion whereas ethanol neutralization inhibited adhesion without lowering proliferation. Mat culture tests indicated that chitosan does not allow proliferation on its surface and it loses antibacterial activity upon blending with PCL. Results suggest that the chemical and structural characteristics of chitosan-based matrices can be manipulated to influence the interaction of different bacterial species.
Chick embryos are useful models for probing developmental mechanisms including those involved in organogenesis. In addition to classic embryological manipulations, it is possible to test the function of molecules and genes while the embryo remains within the egg. Here we define conditions for imaging chick embryo anatomy and for visualising living quail embryos. We focus on the developing limb and describe how different tissues can be imaged using micromagnetic resonance imaging and this information then synthesised, using a three-dimensional visualisation package, into detailed anatomy. We illustrate the potential for micro-magnetic resonance imaging to analyse phenotypic changes following chick limb manipulation. The work with the living quail embryos lays the foundations for using micromagnetic resonance imaging as an experimental tool to follow the consequences of such manipulations over time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.