In vivo reflectance confocal microscopy (RCM) is a noninvasive high-resolution skin imaging tool that has become an important adjunct to clinical exam, dermoscopy and histopathology assessment, in the diagnosis and management of melanoma. RCM generates a horizontal view of the skin, whereby cellular and subcellular (e.g., nuclei, melanophages, collagen) structures, to the level of the upper dermis, are projected onto a screen at near-histological resolution. Morphologic descriptors, standardized terminology, and diagnostic algorithms are well established for the RCM assessment of melanoma, melanocytic, and nonmelanocytic lesions. Clinical applications of RCM in melanoma are broad and include diagnosis, assessment of large lesions on cosmetically sensitive areas, directing areas to biopsy, delineating margins prior to surgery, detecting response to treatment and assessing recurrence. This review will provide an overview of RCM technology, findings by melanoma subtype, clinical applications, as well as explore the accuracy of RCM for melanoma diagnosis, pitfalls and emerging uses of this technology ex vivo.
Scope Varithena® is a recently approved commercially available drug/delivery unit that produces foam using 1% polidocanol for the management of varicose veins. The purpose of this review is to examine the benefits of foam sclerotherapy, features of the ideal foam sclerosant and the strengths and limitations of Varithena® in the context of current foam sclerotherapy practices. Method Electronic databases including PubMed, Medline (Ovid) SP as well as trial registries and product information sheets were searched using the keywords, 'Varithena', 'Varisolve', 'polidocanol endovenous microfoam', 'polidocanol' and/or 'foam sclerotherapy/sclerosant'. Articles published prior to 20 September 2016 were identified. Results Foam sclerosants have effectively replaced liquid agents due to their physiochemical properties resulting in better clinical outcomes. Medical practitioners commonly prepare sclerosant foam at the bedside by agitating liquid sclerosant with a gas such as room air, using techniques as described by Tessari or the double syringe method. Such physician-compounded foams are highly operator dependent producing inconsistent foams of different gas/liquid compositions, bubble size, foam behaviour and varied safety profiles. Varithena® overcomes the variability and inconsistencies of physician-compounded foam. However, Varithena® has limited applications due to its fixed sclerosant type and concentration, cost and lack of worldwide availability. Clinical trials of Varithena® have demonstrated efficacy and safety outcomes equivalent or better than physician-compounded foam but only in comparison to placebo alone. Conclusion Varithena® is a promising step towards the creation of an ideal sclerosant foam. Further assessment in independent randomised controlled clinical trials is required to establish the advantages of Varithena® over and above the current best practice physician-compounded foam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.