This study presents the physicochemical and mechanical behavior of incorporating hydroxyapatite (HAp) with polylactic acid (PLA) matrix in 3D printed PLA/HAp composite materials. Effects of powder loading to the composition, crystallinity, morphology, and mechanical properties were observed. HAp was synthesized from locally sourced nanoprecipitated calcium carbonate and served as the filler for the PLA matrix. The 0, 5, 10, and 15 wt. % HAp biocomposite filaments were formed using a twin-screw extruder. The resulting filaments were 3D printed in an Ultimaker S5 machine utilizing a fused deposition modeling technology. Successful incorporation of HAp and PLA was observed using infrared spectroscopy and X-ray diffraction (XRD). The mechanical properties of pure PLA had improved on the incorporation of 15% HAp; from 32.7 to 47.3 MPa in terms of tensile strength; and 2.3 to 3.5 GPa for stiffness. Moreover, the preliminary in vitro bioactivity test of the 3D printed PLA/HAp biocomposite samples in simulated body fluid (SBF) indicated varying weight gains and the presence of apatite species’ XRD peaks. The HAp particles embedded in the PLA matrix acted as nucleation sites for the deposition of salts and apatite species from the SBF solution
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.