This study aimed at evaluating the mid-term effect of ecto-and endomycorrhizal inoculation on the reduction of PTE mobility in soils and foliar accumulation by two poplar clones, Skado (Populus trichocarpa x P. maximowiczii) and I-214 (P. deltoides x P. nigra), dedicated to bioenergy purposes. The effects of inoculation were investigated in two large scale trials of 1 ha each. Poplars grown on highly contaminated soils accumulated excessive Cd and Zn in leaves compared with those planted on less contaminated soils, and the I-214 clone generally accumulated less PTEs than the Skado clone. Interestingly, the filtering capacity of mycorrhizal fungi was significant for Zn, Cu, Pb and Cr in Skado leaves only at the most contaminated areas after two growing seasons. These foliar concentrations were not correlated with Ca(NO3)2-extractable concentrations in soils, suggesting that mycorrhizal fungi limited PTE translocation from roots to leaves without impacting PTE mobility in soils. Therefore, the reduction of PTE accumulation in poplar leaves may be optimized by selecting appropriate combinations of cultivars and inocula at specific PTE levels and soil conditions.Because Cd and Zn may pose a risk after leaf abscission and wood harvest, further research is needed to efficiently reduce Cd and Zn concentrations in poplar tissues. Otherwise, the phytomanagement of metal contaminated sites with poplars should include options to safely manage both leaves and wood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.