Abstract. The best lattice reduction algorithm known in practice for high dimension is Schnorr-Euchner's BKZ: all security estimates of lattice cryptosystems are based on NTL's old implementation of BKZ. However, recent progress on lattice enumeration suggests that BKZ and its NTL implementation are no longer optimal, but the precise impact on security estimates was unclear. We assess this impact thanks to extensive experiments with BKZ 2.0, the first state-of-the-art implementation of BKZ incorporating recent improvements, such as Gama-Nguyen-Regev pruning. We propose an efficient simulation algorithm to model the behaviour of BKZ in high dimension with high blocksize ≥ 50, which can predict approximately both the output quality and the running time, thereby revising lattice security estimates. For instance, our simulation suggests that the smallest NTRUSign parameter set, which was claimed to provide at least 93-bit security against key-recovery lattice attacks, actually offers at most 65-bit security.
Lattice enumeration algorithms are the most basic algorithms for solving hard lattice problems such as the shortest vector problem and the closest vector problem, and are often used in public-key cryptanalysis either as standalone algorithms, or as subroutines in lattice reduction algorithms. Here we revisit these fundamental algorithms and show that surprising exponential speedups can be achieved both in theory and in practice by using a new technique, which we call extreme pruning. We also provide what is arguably the first sound analysis of pruning, which was introduced in the 1990s by Schnorr et al.
Despite their popularity, lattice reduction algorithms remain mysterious cryptanalytical tools. Though it has been widely reported that they behave better than their proved worst-case theoretical bounds, no precise assessment has ever been given. Such an assessment would be very helpful to predict the behaviour of lattice-based attacks, as well as to select keysizes for lattice-based cryptosystems. The goal of this paper is to provide such an assessment, based on extensive experiments performed with the NTL library. The experiments suggest several conjectures on the worst case and the actual behaviour of lattice reduction algorithms. We believe the assessment might also help to design new reduction algorithms overcoming the limitations of current algorithms.The integer d is the dimension of the lattice L. A lattice has infinitely many bases, but some are more useful than others. The goal of lattice reduction is to find interesting lattice bases, such as bases consisting of reasonably short and almost orthogonal vectors.Lattice reduction is one of the few potentially hard problems currently in use in public-key cryptography (see [29,23] for surveys on lattice-based cryptosystems), with the unique property that some lattice-based cryptosystems [3,34,35,33,11] are based on worst-case assumptions. And the problem is well-known for its major applications in public-key cryptanalysis (see [29]): knapsack cryptosystems [32], RSA in special settings [7,5], DSA signatures in special settings [16,26], etc. One peculiarity is the existence of very efficient approximation algorithms, which can sometimes solve the exact problem. In practice, the most popular lattice reduction algorithms are: floating-point versions [37,27] of the LLL algorithm [20], the LLL algorithm with deep insertions [37], and the BKZ algorithms [37,38], which are all implemented in the NTL library [39].Although these algorithms are widely used, their performances remain mysterious in many ways: it is folklore that there is a gap between the theoretical N. Smart (Ed.): EUROCRYPT
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.