We give a brief review of the non-minimal derivative coupling (NMDC) scalar field theory in which there is non-minimal coupling between the scalar field derivative term and the Einstein tensor. We assume that the expansion is of power-law type or super-acceleration type for small redshift. The Lagrangian includes the NMDC term, a free kinetic term, a cosmological constant term and a barotropic matter term. For a value of the coupling constant that is compatible with inflation, we use the combined WMAP9 (WMAP9+eCMB+BAO+ H0) dataset, the PLANCK+WP dataset, and the PLANCK T T, T E, EE+lowP+Lensing+ext datasets to find the value of the cosmological constant in the model. Modeling the expansion with power-law gives a negative cosmological constants while the phantom power-law (super-acceleration) expansion gives positive cosmological constant with large error bar. The value obtained is of the same order as in the ΛCDM model, since at late times the NMDC effect is tiny due to small curvature.
Tachyonic scalar field-driven late universe with dust matter content is considered. The cosmic expansion is modeled with power-law and phantom power-law expansion at late time, i.e. z 0.45. WMAP7 and its combined data are used to constraint the model. The forms of potential and the field solution are different for quintessence and tachyonic cases. Power-law cosmology model (driven by either quintessence or tachyonic field) predicts unmatched equation of state parameter to the observational value, hence the power-law model is excluded for both quintessence and tachyonic field. In the opposite, the phantom power-law model predicts agreeing valued of equation of state parameter with the observational data for both quintessence and tachyonic cases, i.e. w φ,0 = −1.49 +11.64 −4.08 (WMAP7+BAO+H 0 ) and w φ,0 = −1.51 +3.89 −6.72 (WMAP7). The phantom-power law exponent β must be less than about -6, so that the −2 < w φ,0 < −1. The phantom power-law tachyonic potential is reconstructed. We found that dimensionless potential slope variable Γ at present is about 1.5. The tachyonic potential reduced to V = V 0 φ −2 in the limit Ω m,0 → 0.
Wolf-Villain (WV) model is a simple model used to study ideal molecular beam epitaxy (MBE) growth by using computer simulations. In this model, an adatom diffuses instantaneously within a finite diffusion length to maximize its coordination number. We study statistical properties of thin films grown by this model. The morphology of the WV model is found to be kinetically rough with a downhill particle diffusion current. In real MBE growth, however, there are additional factors such as the existence of a potential barrier that is known as the Ehrlich-Schwoebel (ES) barrier. The ES barrier is an additional barrier for an adatom that diffuses over a step edge from the upper to a lower terrace which is known to induce an uphill particle current. We found that with the addition of the ES barrier, the WV-ES model morphology is rough with mound formation on the surface when the barrier is strong enough. To confirm these results, the correlation function is also studied. We find no oscillation in the correlation function in the WV model. For the WV-ES model, the correlation function oscillates. These results confirm that a strong enough ES barrier can cause mound formation on the WV surface in our study.
We present a phase-space analysis of the qualitative dynamics cosmologies where dark matter exchanges energy with the vacuum component. We find fixed points corresponding to power-law solutions where the different components remain a constant fraction of the total energy density and given an existence condition for any fixed points with nonvanishing energy transfer. For some interaction models we find novel fixed points in the presence of a third noninteracting fluid with constant equation of state, such as radiation, where the interacting vacuum þ matter tracks the evolution of the third fluid, analogous to tracker solutions previously found for self-interacting scalar fields. We illustrate the phase-plane behavior, determining the equation of state and stability of the fixed points in the case of a simple linear interaction model, for interacting vacuum and dark matter, including the presence of noninteracting radiation. We give approximate solutions for the equation of state in matter-or vacuum-dominated solutions in the case of small interaction parameters.
We study the Rényi holographic dark energy (RHDE) model by using the future and the particle horizons as the infrared (IR) cut-off. With the initial condition from the literature, most of the cosmological parameters are computed. Some of the results agree with the observation that the present universe is in accelerating expansion and in a phantom phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.