In this paper, a new method was investigated to enhance remote sensing images by alleviating the point spread function (PSF) effect. The PSF effect exists ubiquitously in remotely sensed imagery. As a result, image quality is greatly affected, and this imposes a fundamental limit on the amount of information captured in remotely sensed images. A geostatistical filter was proposed to enhance image quality based on a downscaling-then-upscaling scheme. The difference between this method and previous methods is that the PSF is represented by breaking the pixel down into a series of sub-pixels, facilitating downscaling using the PSF and then upscaling using a square wave response. Thus, the sub-pixels allow disaggregation as an attempt to remove the PSF effect. Experimental results on simualted and real datasets both suggest that the proposed filter can enhance the original images by reducing the PSF effect and quantify the extent to which this is possible. The predictions using the new method outperform the original coarse PSF-contaminated imagery as well as a benchmark method. The proposed method represents a new solution to compensate for the limitations introduced by remote sensors (i.e., hardware) using computer techniques (i.e., software). The method has widespread application value, particularly for applications based on remote sensing image analysis.
This study proposes an approach for simulating high spatial resolution satellite images acquired under arbitrary sun-sensor geometry using existing images and 3D (three-dimensional) data. First, satellite images, having significant differences in spectral regions compared with those in the simulated image were transformed to the same spectral regions as those in simulated image by using the UPDM (Universal Pattern Decomposition Method). Simultaneously, shadows cast by buildings or high features under the new sun position were modeled. Then, pixels that changed from shadow into non-shadow areas and vice versa were simulated on the basis of existing images. Finally, buildings that were viewed under the new sensor position were modeled on the basis of open library-based 3D reconstruction program. An experiment was conducted to simulate WV-3 (WorldView-3) images acquired under two different sun-sensor geometries based on a Pleiades 1A image, an additional WV-3 image, a Landsat image, and 3D building models. The results show that the shapes of the buildings were modeled effectively, although some problems were noted in the simulation of pixels changing from shadows cast by buildings into non-shadow. Additionally, the mean reflectance of the simulated image was quite similar to that of actual images in vegetation and water areas. However, significant gaps between the mean reflectance of simulated and actual images in soil and road areas were noted, which could be attributed to differences in the moisture content. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http:// creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
In this paper, a comparison and evaluation of three resamplingmethods for gridded DEM is implemented. The evaluation was based onthe results of bilinear resampling, bi-cubic and Kriging resamplingmethods for an experiment using both degraded and sampled datasets at 20m and 60 m spatial resolutions. The evaluation of the algorithms wasaccomplished comprehensively with visual and quantitative assessments.The visual assessment process was based on direct comparison of the sametopographic features in different downscaled images, scatterplots andprofiles. The quantitative assessment was based on the most commonlyused parameters for DEM accuracy assessment such as root mean squareerrors (RMSEs), linear regression parameters m and b, and correlationcoefficient R. Both visual and quantitative assessment revealed greateraccuracy of the Kriging over the other two conventional methods.
With rapid land development, land category should be updated on a regular basis. However, manual field surveys have certain limitations. In this study, attempts were made to extract a feature vector considering spectral signature by parcel, PIMP (Percent Imperviousness), texture, and VIs (Vegetation Indices) based on RapidEye satellite image and cadastral map. A total of nine land categories in which feature vectors were significantly extracted from the images were selected and classified using SVM (Support Vector Machine). According to accuracy assessment, by comparing the cadastral map and classification result, the overall accuracy was 0.74. In the paddy-field category, in particular, PO acc. (producer's accuracy) and US acc. (user's accuracy) were highest at 0.85 and 0.86, respectively. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http:// creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.