This review describes recent progress in the area of molecular simulations of peptide assemblies, including peptide-amphiphiles, and drug-amphiphiles. The ability to predict the structure and stability of peptide self-assemblies from the molecular level up is vital to the field of nanobiotechnology. Computational methods such as molecular dynamics offer the opportunity to characterize intermolecular forces between peptide-amphiphiles that are critical to the self-assembly process. Furthermore, these computational methods provide the ability to computationally probe the structure of these supramolecular assemblies at the molecular level, which is a challenge experimentally. Herein, we briefly highlight progress in the areas of all-atomistic and coarse-grained simulation studies investigating the self-assembly process of short peptides and peptide amphiphiles. We also discuss recent all-atomistic and coarse-grained simulations of the self-assembly of a drug-amphiphile into elongated filaments. Next, we discuss how these computational methods can provide further insight on the pathway of cylindrical nanofiber formation and predict their biocompatibility by studying the interaction of these peptide-amphiphile nanostructures with model cell membranes.
Peptide self-assembly has been used to design an array of nanostructures that possess functional biomedical applications. Experimental studies have reported nanofilament and nanotube formation from peptide-based drug amphiphiles (DAs). These DAs have shown to possess an inherently high drug loading with a tunable release mechanism. Herein, we report rational coarse-grained molecular dynamics simulations of the self-assembly process and the structure and stability of preassembled nanotubes at longer timescales (μs). We find that aggregation between these DAs at the submicrosecond timescale is driven by directional aromatic interactions between the drugs. The drugs form a large and high-density nucleus that is stable throughout microsecond timescales. Simulations of nanotubes characterize the drug−drug stacking and find correlations at nanometer length scales. These simulations can inform the rational molecular design of drug amphiphiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.