Multiple myeloma (MM) is a biologically heterogeneous malignancy, however, the mechanisms underlying this complexity are incompletely understood. We report an analysis of the whole-genome sequencing of 765 MM patients from CoMMpass. By employing promoter capture Hi-C in naïve B-cells, we identify cis-regulatory elements (CREs) that represent a highly enriched subset of the non-coding genome in which to search for driver mutations. We identify regulatory regions whose mutation significantly alters the expression of genes as candidate non-coding drivers, including copy number variation (CNV) at CREs of MYC and single-nucleotide variants (SNVs) in a PAX5 enhancer. To better inform the interplay between non-coding driver mutations with other driver mechanisms, and their respective roles in oncogenic pathways, we extended our analysis identifying coding drivers in 40 genes, including 11 novel candidates. We demonstrate the same pathways can be targeted by coding and non-coding mutations; exemplified by IRF4 and PRDM1, along with BCL6 and PAX5, genes that are central to plasma cell differentiation. This study reveals new insights into the complex genetic alterations driving MM development and an enhanced understanding of oncogenic pathways.
To gain insight into multiple myeloma (MM) tumorigenesis, we analyzed the mutational signatures in 874 whole-exome and 850 whole-genome data from the CoMMpass Study. We identified that coding and non-coding regions are differentially dominated by distinct single-nucleotide variant (SNV) mutational signatures, as well as five de novo structural rearrangement signatures. Mutational signatures reflective of different principle mutational processes—aging, defective DNA repair, and apolipoprotein B editing complex (APOBEC)/activation-induced deaminase activity—characterize MM. These mutational signatures show evidence of subgroup specificity—APOBEC-attributed signatures associated with
MAF
translocation t(14;16) and t(14;20) MM; potentially DNA repair deficiency with t(11;14) and t(4;14); and aging with hyperdiploidy. Mutational signatures beyond that associated with APOBEC are independent of established prognostic markers and appear to have relevance to predicting high-risk MM.
Most patients with multiple myeloma (MM) die from progressive disease after relapse. To advance our understanding of MM evolution mechanisms, we performed whole-genome sequencing of 80 IGH-translocated tumour-normal newly diagnosed pairs and 24 matched relapsed tumours from the Myeloma XI trial. We identify multiple events as potentially important for survival and therapy-resistance at relapse including driver point mutations (e.g., TET2), translocations (MAP3K14), lengthened telomeres, and increased genomic instability (e.g., 17p deletions). Despite heterogeneous mutational processes contributing to relapsed mutations across MM subtypes, increased AID/APOBEC activity is particularly associated with shorter progression time to relapse, and contributes to higher mutational burden at relapse. In addition, we identify three enhanced major clonal evolution patterns of MM relapse, independent of treatment strategies and molecular karyotypes, questioning the viability of “evolutionary herding” approach in treating drug-resistant MM. Our data show that MM relapse is associated with acquisition of new mutations and clonal selection, and suggest APOBEC enzymes among potential targets for therapy-resistant MM.
SummaryMultiple myeloma (MM) is a malignancy of plasma cells. Genome-wide association studies have shown that variation at 5q15 influences MM risk. Here, we have sought to decipher the causal variant at 5q15 and the mechanism by which it influences tumorigenesis. We show that rs6877329 G > C resides in a predicted enhancer element that physically interacts with the transcription start site of ELL2. The rs6877329-C risk allele is associated with reduced enhancer activity and lowered ELL2 expression. Since ELL2 is critical to the B cell differentiation process, reduced ELL2 expression is consistent with inherited genetic variation contributing to arrest of plasma cell development, facilitating MM clonal expansion. These data provide evidence for a biological mechanism underlying a hereditary risk of MM at 5q15.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.