We propose a walking distance estimation method based on an adaptive step-length estimator at various walking speeds using a smartphone. First, we apply a fast Fourier transform (FFT)-based smoother on the acceleration data collected by the smartphone to remove the interference signals. Then, we analyze these data using a set of step-detection rules in order to detect walking steps. Using an adaptive estimator, which is based on a model of average step speed, we accurately obtain the walking step length. To evaluate the accuracy of the proposed method, we examine the distance estimation for four different distances and three speed levels. The experimental results show that the proposed method significantly outperforms conventional estimation methods in terms of accuracy.
This paper proposes a novel method of estimating walking distance based on a precise counting of walking strides using insole sensors. We use an inertial triaxial accelerometer and eight pressure sensors installed in the insole of a shoe to record walkers’ movement data. The data is then transmitted to a smartphone to filter out noise and determine stance and swing phases. Based on phase information, we count the number of strides traveled and estimate the movement distance. To evaluate the accuracy of the proposed method, we created two walking databases on seven healthy participants and tested the proposed method. The first database, which is called the short distance database, consists of collected data from all seven healthy subjects walking on a 16 m distance. The second one, named the long distance database, is constructed from walking data of three healthy subjects who have participated in the short database for an 89 m distance. The experimental results show that the proposed method performs walking distance estimation accurately with the mean error rates of 4.8% and 3.1% for the short and long distance databases, respectively. Moreover, the maximum difference of the swing phase determination with respect to time is 0.08 s and 0.06 s for starting and stopping points of swing phases, respectively. Therefore, the stride counting method provides a highly precise result when subjects walk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.