The pharmacokinetic profile of most drugs is dependent on the patient's covariates and may be influenced by the disease. Cefotaxime is frequently prescribed in pediatric patients with sickle cell disease (SCD), characterized by vaso-occlusive complications, chronic hemolytic anemia, and a defective immunological function predisposing the individual to severe infection. Data on the impact of the disease on the disposition of cefotaxime are missing. In the present study, our aims were to determine cefotaxime pharmacokinetics when prescribed to children with SCD for suspected or proven bacterial infection, identify significant covariates, and perform Monte Carlo simulations to optimize the drug dosage. Cefotaxime serum concentrations were measured in 78 pediatric SCD patients receiving cefotaxime intravenously at a daily dose of 200 mg/kg of body weight in three or four divided doses over 30 min. A total of 107 concentrations were available for pharmacokinetic analysis. A population pharmacokinetic model was developed with NONMEM software and used for Monte Carlo simulations. Cefotaxime concentrations ranged from 0.05 to 103.7 mg/liter. Cefotaxime pharmacokinetics were best described by a one-compartment model: the median estimated weight-normalized volume of distribution and clearance were 0.42 liter/kg (range, 0.2 to 1.1 liter/kg) and 0.38 liter/h/kg (range, 0.1 to 1.2 liter/h/kg). Cefotaxime clearance increased by 22% in patients with acute chest syndrome. Dosing optimization, performed using EUCAST MIC susceptibility breakpoints, showed that a dose of 100 mg/kg/6 h should be used, depending on the patient's characteristics and clinical presentation, in order to reach a value of the percentage of time that the drug concentration exceeded the MIC under steady-state pharmacokinetic conditions of 80% in 80% of the patients when targeting sensitive Gram-positive cocci and Gram-negative bacilli with MICs of 1 mg/liter or below.
The exposure-adjusted incidence rate of gastrointestinal disorders and neutropenia was higher in children under the tacrolimus schedule. Our findings contribute to the evaluation of the benefit-risk balance of immunosuppressive therapy following paediatric renal transplantation.
Background
Pharmacokinetics data on ceftazidime are sparse for the paediatric population, particularly for children with cystic fibrosis (CF) or severe infections.
Objectives
To characterize the population pharmacokinetics of ceftazidime in critically ill children, identify covariates that affect drug disposition and evaluate the current dosing regimens.
Methods
The study was registered with Clinicaltrials.gov (NCT01344512). Children receiving ceftazidime were selected in 13 French hospitals. Plasma concentrations were determined by UPLC-MS/MS. Population pharmacokinetic analyses were performed using NONMEN software.
Results
One hundred and eight patients, aged 28 days to 12 years, with CF (n = 32), haematology and/or oncology disorders (n = 47) or severe infection (n = 29) were included. Ceftazidime was administered by continuous or intermittent infusions; 271 samples were available for analysis. A two-compartment model with first-order elimination and allometric scaling was developed and covariate analysis showed that ceftazidime pharmacokinetics were also significantly affected by CLCR and CF. Ceftazidime clearance was 82% higher in CF than in non-CF patients. Monte Carlo simulations showed that the percentage of target attainment (PTA) for the target of T>MIC = 65% was (i) lower in CF than in non-CF children with intermittent infusions and (ii) higher with continuous than intermittent infusion in all children.
Conclusions
The population pharmacokinetics model for ceftazidime in children was influenced by body weight, CLCR and CF. A higher PTA was obtained with continuous versus intermittent infusions. Further studies should explore the benefits of continuous versus intermittent infusion of ceftazidime, including current versus increased doses in CF children.
Research experience and processes vary across Europe. Harmonizing research practices and setting standards will allow building a European neonatal network for effective, safe, and quality neonatal drug development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.