Hematopoietic stem cell (HSC) self-renewal is regulated by both intrinsic and extrinsic signals. Although some of the pathways that regulate HSC self-renewal have been uncovered, it remains largely unknown whether these pathways can be triggered by deliverable growth factors to induce HSC growth or regeneration. Here we show that pleiotrophin, a neurite outgrowth factor with no known function in hematopoiesis, efficiently promotes HSC expansion in vitro and HSC regeneration in vivo. Treatment of mouse bone marrow HSCs with pleiotrophin caused a marked increase in long-term repopulating HSC counts in culture, as measured in competitive repopulating assays. Treatment of human cord blood CD34+CDCD38−Lin− cells with pleiotrophin also substantially increased severe combined immunodeficient (SCID)-repopulating cell counts in culture, compared to input and cytokine-treated cultures. Systemic administration of pleiotrophin to irradiated mice caused a pronounced expansion of bone marrow stem and progenitor cells in vivo, indicating that pleiotrophin is a regenerative growth factor for HSCs. Mechanistically, pleiotrophin activated phosphoinositide 3-kinase (PI3K) signaling in HSCs; antagonism of PI3K or Notch signaling inhibited pleiotrophin-mediated expansion of HSCs in culture. We identify the secreted growth factor pleiotrophin as a new regulator of both HSC expansion and regeneration
The mechanisms which regulate HSC regeneration following myelosuppressive injury are not well understood. We identified epidermal growth factor (EGF) to be highly enriched in the bone marrow (BM) serum of mice bearing deletion of Bak and Bax in Tie2+ cells (Tie2Cre;Bak1−/−;Baxfl/− mice), which displayed radioprotection of the HSC pool and 100% survival following lethal dose total body irradiation (TBI). BM HSCs from wild type mice expressed functional EGFR and systemic administration of EGF promoted the recovery of the HSC pool in vivo and the improved survival of mice following TBI. Conversely, administration of erlotinib, an EGFR antagonist, significantly decreased both HSC regeneration and mice survival following TBI. VavCre;EGFRfl/+ mice also demonstrated delayed recovery of BM stem/progenitor cells following TBI compared to VavCre;EGFR+/+ mice. Mechanistically, EGF reduced radiation-induced apoptosis of HSCs and mediated this effect via repression of the proapoptotic protein, PUMA. EGFR signaling regulates HSC regeneration following myelosuppressive injury.
SUMMARY
The mechanisms through which the bone marrow (BM) microenvironment regulates hematopoietic stem cell (HSC) fate remain incompletely understood. We examined the role of the heparin-binding growth factor, pleiotrophin (PTN), in regulating HSC function in the niche. PTN−/− mice displayed significantly decreased BM HSC content and impaired hematopoietic regeneration following myelosuppression. Conversely, mice lacking the protein tyrosine phosphatase receptor-zeta (PTPRZ), which is inactivated by PTN, displayed significantly increased BM HSC content. Transplant studies revealed that PTN action was not HSC-autonomous but rather was mediated by the BM microenvironment. Interestingly, PTN was differentially expressed and secreted by BM sinusoidal endothelial cells within the vascular niche. Furthermore, systemic administration of anti-PTN antibody in mice substantially impaired both the homing of hematopoietic progenitor cells to the niche and the retention of BM HSCs in the niche. PTN is a secreted component of the BM vascular niche which regulates HSC self-renewal and retention in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.