This paper considers the downlink transmission of cloud-radio access networks (C-RANs) with limited fronthaul capacity. We formulate a joint design of remote radio head (RRH) selection, RRH-user association, and transmit beamforming for simultaneously optimizing the achievable sum rate and total power consumption, using the multi-objective optimization concept. Due to the non-convexity of per-fronthaul capacity constraints and introduced binary selection variables, the formulated problem lends itself to a mixed-integer non-convex program, which is generally NP-hard. Motivated by powerful computing capability of C-RAN and for benchmarking purposes, we propose a branch and reduce and bound based algorithm to attain a globally optimal solution. For more practically appealing approaches, we then propose three iterative low-complexity algorithms. In the first method, we iteratively approximate the continuous nonconvex constraints by convex conic ones using successive convex approximation (SCA) framework. More explicitly, the problem obtained at each iteration is a mixed-integer second order cone program (MI-SOCP) for which dedicated solvers are available. In the second method, we first relax the binary variables to be continuous to arrive at a sequence of SOCPs and then perform a post-processing procedure on the relaxed variables to search for a high-performance solution. In the third method, we solve the considered problem in view of sparsity-inducing regularization. Numerical results show that our proposed algorithms converge rapidly and achieve near-optimal performance as well as outperform the known algorithms. Index Terms-Base station selection, beamforming, cloud radio access networks, limited fronthaul, mixed integer second order cone programming, optimization.
The UCD community has made this article openly available. Please share how this access benefits you. Your story matters! (@ucd_oa) Some rights reserved. For more information, please see the item record link above.
We consider the downlink of an unmanned aerial vehicle (UAV) assisted cellular network consisting of multiple cooperative UAVs, whose operations are coordinated by a central ground controller using wireless fronthaul links, to serve multiple ground user equipments (UEs). A problem of jointly designing UAVs' positions, transmit beamforming, as well as UAV-UE association is formulated in the form of mixed integer nonlinear programming (MINLP) to maximize the sum UEs' achievable rate subject to limited fronthaul capacity constraints. Solving the considered problem is hard owing to its non-convexity and the unavailability of channel state information (CSI) due to the movement of UAVs. To tackle these effects, we propose a novel algorithm comprising of two distinguishing features: (i) exploiting a deep Q-learning approach to tackle the issue of CSI unavailability for determining UAVs' positions, (ii) developing a difference of convex algorithm (DCA) to efficiently solve for the UAV's transmit beamforming and UAV-UE association. The proposed algorithm recursively solves the problem of interest until convergence, where each recursion executes two steps. In the first step, the deep Q-learning (DQL) algorithm allows UAVs to learn the overall network state and account for the joint movement of all UAVs to adapt their locations. In the second step, given the determined UAVs' positions from the DQL algorithm, the DCA iteratively solves a convex approximate subproblem of the original non-convex MINLP problem with the updated parameters, where the problem's variables are transmit beamforming and UAV-UE association. Numerical results show that our design outperforms the existing algorithms in terms of algorithmic convergence and network performance with a gain of up to 70%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.