ObjectiveTo investigate maternal immunoglobulins’ (IgM, IgG) response to SARS-CoV-2 infection during pregnancy and IgG transplacental transfer, to characterise neonatal antibody response to SARS-CoV-2 infection, and to longitudinally follow actively and passively acquired antibodies in infants.DesignA prospective observational study.SettingPublic healthcare system in Santa Clara County (California, USA).ParticipantsWomen with symptomatic or asymptomatic SARS-CoV-2 infection during pregnancy and their infants were enrolled between 15 April 2020 and 31 March 2021.OutcomesSARS-CoV-2 serology analyses in the cord and maternal blood at delivery and longitudinally in infant blood between birth and 28 weeks of life.ResultsOf 145 mothers who tested positive for SARS-CoV-2 during pregnancy, 86 had symptomatic infections: 78 with mild-moderate symptoms, and 8 with severe-critical symptoms. The seropositivity rates of the mothers at delivery was 65% (95% CI 0.56% to 0.73%) and the cord blood was 58% (95% CI 0.49% to 0.66%). IgG levels significantly correlated between the maternal and cord blood (Rs=0.93, p<0.0001). IgG transplacental transfer ratio was significantly higher when the first maternal positive PCR was 60–180 days before delivery compared with <60 days (1.2 vs 0.6, p<0.0001). Infant IgG seroreversion rates over follow-up periods of 1–4, 5–12, and 13–28 weeks were 8% (4 of 48), 12% (3 of 25), and 38% (5 of 13), respectively. The IgG seropositivity in the infants was positively related to IgG levels in the cord blood and persisted up to 6 months of age. Two newborns showed seroconversion at 2 weeks of age with high levels of IgM and IgG, including one premature infant with confirmed intrapartum infection.ConclusionsMaternal SARS-CoV-2 IgG is efficiently transferred across the placenta when infections occur more than 2 months before delivery. Maternally derived passive immunity may persist in infants up to 6 months of life. Neonates are capable of mounting a strong antibody response to perinatal SARS-CoV-2 infection.
Heparin-induced thrombocytopenia (HIT) is an immune-mediated adverse effect that typically manifests several days after the start of heparin therapy, although both rapid- and delayed-onset HIT have been described. Its most serious complication is thrombosis. Although not all patients develop thrombosis, it can be life threatening. The risk of developing HIT is related to many factors, including the type of heparin product administered, route of administration, duration of therapy, patient population, and previous exposure to heparin. The diagnosis of HIT is typically based on clinical presentation, exposure to heparin, and presence of thrombocytopenia with or without thrombosis. Antigen and activation laboratory assays are available to support the diagnosis of HIT. However, because of the limited sensitivity and specificity of these assays, bedside probability scales for HIT were developed. When HIT is suspected, prompt cessation of all heparin therapy is necessary, along with initiation of alternative anticoagulant therapy. Two direct thrombin inhibitors--argatroban and lepirudin--are approved for the management of HIT in the United States, and bivalirudin is approved for use in patients with HIT who are undergoing percutaneous coronary intervention. Other agents, although not approved to manage HIT, have also been used; however, their role in therapy requires further evaluation. A comprehensive HIT management strategy involves the evaluation of numerous factors. Many patients, including those undergoing coronary artery bypass surgery, those with acute coronary syndromes, those with hepatic or renal insufficiency, and children, require special attention. Clinicians must become familiar with the available information on this serious adverse effect and its treatment so that optimum patient management strategies may be formulated.
Heparin-induced thrombocytopenia requires immediate alternative anticoagulation to prevent or treat thromboembolic complications. Argatroban was approved based on multiple-center studies from the 1990s, but subsequent changes in prevailing awareness, diagnostic testing and therapeutic strategies for heparin-induced thrombocytopenia might affect results of argatroban therapy. Charts were retrospectively reviewed from patients administered argatroban for suspected heparin-induced thrombocytopenia over 22 months at a single large university hospital. Twenty-seven patients, most in intensive care units, received a median 0.5 microg/kg/min argatroban over a median 5.5 days. Patients had isolated heparin-induced thrombocytopenia (n = 10), had heparin-induced thrombocytopenia with thrombosis (n = 9), or lacked active heparin-induced thrombocytopenia (n = 8) on final analysis. New thromboses (14.8%), progression of preexisting thromboses (0%), amputation secondary to heparin-induced thrombocytopenia (0%), death (22.2%), bleeding requiring transfusion (3.7%), and any bleeding (22.2%) compared favorably with older multiple-center reports. Deaths occurred mainly with preexisting multiple-organ failure. In contemporary "real world" use, argatroban provides safe and effective anticoagulation, strengthening the mandate to initiate alternative anticoagulation whenever heparin-induced thrombocytopenia appears likely.
OBJECTIVE To investigate maternal immunoglobulin (IgM, IgG) response to SARS-CoV-2 infection during pregnancy and IgG transplacental transfer, to characterize neonatal antibody response to SARS-CoV-2 infection, and to longitudinally follow actively- and passively-acquired SARS-CoV-2 antibodies in infants. DESIGN A prospective observational study. SETTING A public healthcare system in Santa Clara County (CA, USA). PARTICIPANTS Women with SARS-CoV-2 infection during pregnancy and their infants were enrolled between April 15, 2020 and March 31, 2021. OUTCOMES SARS-CoV-2 serology analyses in the cord and maternal blood at delivery and longitudinally in infant blood between birth and 28 weeks of life. RESULTS Of 145 mothers who tested positive for SARS-CoV-2 during pregnancy, 86 had symptomatic infections: 78 with mild-moderate symptoms, and eight with severe-critical symptoms. Of the 147 newborns, two infants showed seroconversion at two weeks of age with high levels of IgM and IgG, including one premature infant with confirmed intrapartum infection. The seropositivity rates of the mothers at delivery was 65% (95% CI 0.56-0.73) and the cord blood was 58% (95% CI 0.49-0.66). IgG levels significantly correlated between the maternal and cord blood (Rs= 0.93, p< 0.0001). IgG transplacental transfer ratio was significantly higher when the first maternal positive PCR was 60-180 days before delivery compared to <60 days (1.2 vs. 0.6, p=<0.0001). Infant IgG negative conversion rate over follow-up periods of 1-4, 5-12, and 13-28 weeks were 8% (4/48), 12% (3/25), and 38% (5/13), respectively. The IgG seropositivity in the infants was positively related to IgG levels in the cord blood and persisted up to six months of age. CONCLUSIONS Maternal SARS-CoV-2 IgG is efficiently transferred across the placenta when infections occur more than two months before delivery. Maternally-derived passive immunity may protect infants up to six months of life. Neonates mount a strong antibody response to perinatal SARS-CoV-2 infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.