Malaria is a life-threatening mosquito-borne disease. Recently, the number of malaria cases has increased worldwide, threatening vulnerable populations. Malaria is responsible for a high rate of morbidity and mortality in people all around the world. Each year, many people, die from this disease, according to the World Health Organization (WHO). Thick and thin blood smears are used to determine parasite habitation and computer-aided diagnosis (CADx) techniques using machine learning (ML) are being used to assist. CADx reduces traditional diagnosis time, lessens socio-economic impact, and improves quality of life. This study develops a simplified model with selective features to reduce processing power and further shorten diagnostic time, which is important to resource-constrained areas. To improve overall classification results, we use a decision tree (DT)-based approach with image pre-processing called optimal features to identify optimal features. Various feature selection and extraction techniques are used, including information gain (IG). Our proposed model is compared to a benchmark state-of-art classification model. For an unseen dataset, our proposed model achieves accuracy, precision, recall, F-score, and processing time of 0.956, 0.949, 0.964, 0.956, and 9.877 s, respectively. Furthermore, our proposed model’s training time is less than those of the state-of-the-art classification model, while the performance metrics are comparable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.