Cholestatic liver injury appears to result from the induction of hepatocyte apoptosis by toxic bile salts such as glycochenodeoxycholate (GCDC). Previous studies from this laboratory indicate that cathepsin B is a downstream effector protease during the hepatocyte apoptotic process. Because caspases can initiate apoptosis, the present studies were undertaken to determine the role of caspases in cathepsin B activation. Immunoblotting of GCDC-treated McNtcp.24 hepatoma cells demonstrated cleavage of poly(ADP-ribose) polymerase and lamin B 1 to fragments that indicate activation of effector caspases. Transfection with CrmA, an inhibitor of caspase 8, prevented GCDC-induced cathepsin B activation and apoptosis. Consistent with these results, an increase in caspase 8-like activity was observed in GCDC-treated cells. Examination of the mechanism of GCDC-induced caspase 8 activation revealed that dominant-negative FADD inhibited apoptosis and that hepatocytes isolated from Fas-deficient lymphoproliferative mice were resistant to GCDC-induced apoptosis. After GCDC treatment, immunoprecipitation experiments demonstrated Fas oligomerization, and confocal microscopy demonstrated ∆FADD-GFP (Fas-associated death domain-green fluorescent protein, aggregation in the absence of detectable Fas ligand mRNA. Collectively, these data suggest that GCDC-induced hepatocyte apoptosis involves ligand-independent oligomerization of Fas, recruitment of FADD, activation of caspase 8, and subsequent activation of effector proteases, including downstream caspases and cathepsin B.
Recent genetic and biochemical studies have implicated cysteine-dependent aspartate-directed proteases (caspases) in the active phase of apoptosis. In the present study, three complementary techniques were utilized to follow caspase activation during the course of etoposide-induced apoptosis in HL-60 human leukemia cells. Immunoblotting revealed that levels of procaspase-2 did not change during etoposide-induced apoptosis, whereas levels of procaspase-3 diminished markedly 2-3 h after etoposide addition. At the same time, cytosolic peptidase activities that cleaved DEVDaminotrifluoromethylcoumarin and VEID-aminomethylcoumarin increased 100-and 20-fold, respectively; but there was only a 1.5-fold increase in YVAD-aminotrifluoromethylcoumarin cleavage activity. Affinity labeling with N-(N ␣ -benzyloxycarbonylglutamyl-N ⑀ -biotinyllysyl)-aspartic acid [(2,6-dimethylbenzoyl)oxy]methyl ketone indicated that multiple active caspase species sequentially appeared in the cytosol during the first 6 h after the addition of etoposide. Analysis on one-and twodimensional gels revealed that two species comigrated with caspase-6 and three comigrated with active caspase-3 species, suggesting that several splice or modification variants of these enzymes are active during apoptosis. Polypeptides that comigrate with the cytosolic caspases were also labeled in nuclei of apoptotic HL-60 cells. These results not only indicate that etoposide-induced apoptosis in HL-60 cells is accompanied by the selective activation of multiple caspases in cytosol and nuclei, but also suggest that other caspase precursors such as procaspase-2 are present but not activated during apoptosis.Recent studies (reviewed in Refs. 1-5) indicate that the cytotoxicity of virtually all chemotherapeutic agents is accompanied by apoptosis in susceptible cell lines. Likewise, experiments in animals (6 -9) and studies of circulating blasts from leukemia patients (10) have provided evidence that chemotherapy is accompanied by apoptosis in vivo. Moreover, it has been suggested that resistance to the cytotoxic effects of chemotherapeutic agents can result from resistance to chemotherapyinduced apoptosis (8,11,12). These observations highlight the potential importance of understanding the factors that control apoptosis.
Bcl-2, Bcl-xL, and Mcl-1 are three related intracellular polypeptides that have been implicated as negative regulators of apoptosis. In contrast, the partner protein Bax acts as a positive regulator of apoptosis. Based on the observation that all four of these polypeptides are expressed in a variety of acute myelogenous leukemia (AML) and acute lymphocytic leukemia (ALL) cell lines, cellular levels of these polypeptides were examined by immunoblotting in bone marrow samples harvested from 123 adult AML patients and 36 adult ALL patients before initial antileukemic therapy. Levels of Bcl-2, Mcl-1, Bcl-xL, and Bax each varied over a more than 10-fold range in different pretreatment leukemia specimens. When the 54 AML and 23 ALL samples that contained greater than 80% malignant cells were examined in greater detail, it was observed that pretreatment levels of Bcl-2 and Mcl-1 correlated with each other (R = .44,P < .001 for AML and R = .79,P < .0001 for ALL). In addition, a weak negative correlation between Bax expression and age was observed in AML samples (R = −0.35, P < .02) but not ALL samples. There was no relationship between pretreatment levels of these polypeptides and response to initial therapy. However, examination of 19 paired samples (the first harvested before chemotherapy and the second harvested 23 to 290 days later at the time of leukemic recurrence) revealed a greater than or equal to twofold increase in Mcl-1 levels in 10 of 19 pairs (7 of 15 AML and 3 of 4 ALL) at recurrence. In contrast, 2 of 19 pairs contained twofold less Mcl-1 at the time of recurrence. Approximately equal numbers of samples showed twofold increases and decreases in Bcl-2 (5 increases, 3 decreases) and Bcl-xL (1 increase, 4 decreases) at recurrence. Bax levels did not show a twofold decrease in any patient. These results, coupled with recent observations that cells overexpressing Mcl-1 are resistant to a variety of chemotherapeutic agents, raise the possibility that some chemotherapeutic regimens might select for leukemia cells with elevated levels of this particular apoptosis inhibitor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.