Patients with generalized social anxiety disorder (GSAD) exhibit heightened activation of the amygdala in response to social cues conveying threat (eg, fearful/angry faces). The neuropeptide oxytocin (OXT) decreases anxiety and stress, facilitates social encounters, and attenuates amygdala reactivity to threatening faces in healthy subjects. The goal of this study was to examine the effects of OXT on fear-related amygdala reactivity in GSAD and matched healthy control (CON) subjects. In a functional magnetic resonance imaging study utilizing a double-blind placebo-controlled within-subjects design, we measured amygdala activation to an emotional face matching task of fearful, angry, and happy faces following acute intranasal administration of OXT (24 IU or 40.32 μg) and placebo in 18 GSAD and 18 CON subjects. Both the CON and GSAD groups activated bilateral amygdala to all emotional faces during placebo, with the GSAD group exhibiting hyperactivity specifically to fearful faces in bilateral amygdala compared with the CON group. OXT had no effect on amygdala activity to emotional faces in the CON group, but attenuated the heightened amygdala reactivity to fearful faces in the GSAD group, such that the hyperactivity observed during the placebo session was no longer evident following OXT (ie, normalization). These findings suggest that OXT has a specific effect on fear-related amygdala activity, particularly when the amygdala is hyperactive, such as in GSAD, thereby providing a brain-based mechanism of the impact of OXT in modulating the exaggerated processing of social signals of threat in patients with pathological anxiety.
Emotion and attention heighten sensitivity to visual cues. How neural activation patterns associated with emotion change as a function of the availability of attentional resources is unknown. We used positron emission tomography (PET) and 15O-water to measure brain activity in male volunteers while they viewed emotional picture sets that could be classified according to valence or arousal. Subjects simultaneously performed a distraction task that manipulated the availability of attentional resources. Twelve scan conditions were generated in a 3 x 2 x 2 factorial design involving three levels of valence (pleasant, unpleasant and neutral), two levels of arousal and two levels of attention (low and high distraction). Extrastriate visual cortical and anterior temporal areas were independently activated by emotional valence, arousal and attention. Common areas of activation derived from a conjunction analysis of these separate activations revealed extensive areas of activation in extrastriate visual cortex with a focus in right BA18 (12, -88, -2) (Z=5.73, P < 0.001 corrected) and right anterior temporal cortex BA38 (42, 14, -30) (Z=4.03, P < 0.05 corrected). These findings support an hypothesis that emotion and attention modulate both early and late stages of visual processing.
We employed fMRI to index neural activity in prefrontal cortex during tests of recognition and source memory. At study, subjects were presented with words displayed either to the left or right of fixation, and, depending on the side, performed one of two orienting tasks. The test phase consisted of a sequence of three 10-word blocks, displayed in central vision. For one block, subjects performed recognition judgements on a mixture of two old and eight new words (low density recognition). For another block, recognition judgements were performed on a mixture of eight old and two new words (high density recognition). In the remaining block, also consisting of eight old and two new items, the requirement was to judge whether each word had been presented at study on the left or the right. Relative to the low density condition, high density recognition was associated with increased activity in right and, to a lesser extent, left, anterior prefrontal cortex (BA 10), replicating the findings of two previous PET studies. Right anterior prefrontal activity did not show any further increase during the source task. Instead, greater activity was found, relative to high density recognition, in left BA 10, left inferior frontal gyrus (BA 45/47), and bilateral opercular cortices (BA 45/47). The findings are inconsistent with the proposal that activation of right anterior prefrontal cortex during memory retrieval reflects "postretrieval" processing demands, such demands being considerably greater for judgments of source than recognition. The findings provide further evidence that the left prefrontal cortex plays a role in episodic memory retrieval when the task explicitly requires recovery of contextual as well as item information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.