The synthesis of a series of platinum complexes of trans coordination geometry [centered around the general formula, trans-ammine(amine)dichlorodihydroxoplatinum(IV) plus corresponding tetrachloroplatinum(IV) or Pt(II) counterparts] is described as part of a drug discovery program to identify more effective platinum-based anticancer drugs, particularly targeted toward the circumvention of resistance to cisplatin. Complexes have been evaluated for antitumor activity using in vitro and in vivo tumor models. In vitro against a panel of cisplatin-sensitive and -resistant human tumor cell lines (predominantly ovarian), many of the trans platinum complexes studied (e.g., 1, R = cyclohexyl) exhibited comparable potency to cisplatin and also overcame acquired cisplatin resistance, where resistance was due mainly to either reduced drug uptake or enhanced platinum-DNA adduct removal. Moreover, 14 trans complexes showed significant in vivo antitumor activity against the subcutaneous murine ADJ/PC6 plasmacytoma model; all were platinum(IV) complexes, 13/14 possessing axial hydroxo ligands the other possessing axial ethylcarbamato ligands. Where tested, all of their respective platinum(II) or tetrachloroplatinum(IV) counterparts were inactive. Notably, three dihydroxoPt(IV) complexes (18, 29, 34) (R = c-hexyl, c-heptyl, and 1-adamantyl) retained some efficacy against a cisplatin-resistant variant of the ADJ/PC6. Compounds 18 (trans-[PtCl2(OH)2NH3-(RNH2)]) R = c-C6H11, 22, R = Me3C, 27, R = n-C6H13, 28, R = PhCH2, and 36 (trans-[PtBr2(OH)2NH3(c-C6H11NH2)]) also produced evidence of antitumor activity (> 5 days growth delay) against subcutaneously grown advanced stage human ovarian carcinoma xenografts. These data demonstrate that a series of trans-ammine(amine)dichlorodihydroxoplatinum(IV) complexes are active in vivo against both murine and human subcutaneous tumor models and represent potential leads to a new generation of platinum-based anticancer drug.
We examined the in vitro cytotoxicity, antitumour activity and preclinical pharmacokinetics of the novel sequence-selective, bifunctional alkylating agent DSB-120, a synthetic pyrrolo[1,4][2,1-c]benzodiazepine dimer. DSB-120 was shown to be a potent cytotoxic agent in vitro against a panel of human colon carcinomas [50% growth-inhibitory concentration (IC50) 42 +/- 7.9 nM, mean +/- SE, n = 7] and two rodent tumours (L1210 and ADJ/PC6). Antitumour activity was assessed in the bifunctional alkylating-agent-sensitive murine plasmacytoma ADJ/PC6 using a variety of administration protocols. The maximal antitumour effects were observed following a single i.v. dose but the therapeutic index was only 2.6. DSB-120 was less effective when given i.p. either singly or by a daily x 5 schedule. After a single i.v. dose at the maximum tolerated dose (MTD, 5 mgkg-1) the plasma elimination was biphasic, with a short distribution phase (t1/2 alpha 4 min) being followed by a longer elimination phase (t1/2 beta 38 min). Peak plasma concentrations were 25 micrograms ml-1, the clearance was 1.3 ml g-1 h-1 and the AUC0-infinity was 230 micrograms ml-1 min. Concentrations of DSB-120 in ADJ/PC6 tumours were very low, showing a peak of 0.4 micrograms g-1 at 5 min. The steady-state tumour/plasma ratio was about 5% and the AUC was only 2.5% of that occurring in the plasma. DSB-120 appeared to be unstable in vivo, with only 1% of an administered dose being recovered unchanged in 24-h urine samples. Plasma protein binding was extensive at 96.6%. In conclusion, the poor antitumour activity of DSB-120 may be a consequence of low tumour selectivity and drug uptake as a result of high protein binding and/or extensive drug metabolism in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.