Two-photon polymerization (TPP) technologies commonly rely on femtosecond lasers such as Ti:sapphire which limits their accessibility due to high costs and complexities. Recently, multiple reports showed TPP under near-infrared irradiation which enables the use of alternative light sources such as Neodymium-doped lasers known to be affordable and efficient for nanosecond and picosecond pulsed generation. 4,4′-bis(dimethylamino) benzophenone or Michler’s ketone (MK), one of the photoinitiators commonly used for photopolymerization under UV irradiation, also shows an absorption band in the visible region which allows for two-photon polymerization at the fundamental wavelength of Neodymium-doped lasers at 1064 nm. In this report, we investigated the two-photon absorption (TPA) of MK in contrast with Irgacure-784 and Indane-1,3-dione, reported to also be promising photoinitiators for the same TPP process. Among them, MK showed a large TPA cross-section measured via the nonlinear transmission method and Z-scan technique with Q-switched Nd:YAG nanosecond pulse laser at 1064 nm, demonstrating MK as a promising photoinitiator for the low-cost two-photon polymerization.
Two-photon polymerization (TPP) technologies commonly rely on femtosecond lasers such as Ti:sapphire which limits their accessibility due to high costs and complexities. Recently, multiple reports showed TPP under near-infrared irradiation which enables the use of alternative light sources such as Neodymium-doped lasers known to be affordable and e cient for nanosecond and picosecond pulsed generation. 4,4′-bis(dimethylamino) benzophenone or Michler's ketone (MK), one of the photoinitiators commonly used for photopolymerization under UV irradiation, also shows an absorption band in the visible region which allows for two-photon polymerization at the fundamental wavelength of Neodymium-doped lasers at 1064 nm. In this report, we investigated the two-photon absorption (TPA) of MK in contrast with Irgacure-784 and Indane-1,3-dione, reported to also be promising photoinitiators for the same TPP process. Among them, MK showed a large TPA cross-section measured via the nonlinear transmission method and Z-scan technique with Q-switched Nd:YAG nanosecond pulse laser at 1064 nm, demonstrating MK as a promising photoinitiator for the low-cost two-photon polymerization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.