A 6‐year climatology of subvisual and opaque cloud occurrence frequencies is established using observations from the Stratospheric Aerosol and Gas Experiment (SAGE) II between 1985 and 1990. The subvisual clouds are observed mostly at high altitudes near the tropopause. The opaque clouds terminate the profiling, reducing the measurement frequency of the SAGE II instrument in the troposphere. With its 1‐km vertical resolution, the climatology shows many interesting features, including (1) the seasonal expansion and migration behavior of the subvisual and opaque cloud systems; (2) the association of the zonal mean cloud frequency distributions with the tropospheric mean circulation (Hadley and Ferrel cells); (3) the tropical cloud occurrence that follows the equatorial circulation, including the Walker circulation over the Pacific Ocean; and (4) the overall higher cloud occurrence in the northern hemisphere than in the southern hemisphere. The radiative impact of subvisual clouds is estimated to be a 1‐W m−2 reduction in outgoing longwave radiation. The maximum overall effect is a net positive cloud forcing of 0.5–1 W m−2 in the tropics. During the 1987 El Niño‐Southern Oscillation (ENSO), cloud frequency was generally enhanced in the tropics and midlatitudes and reduced in the subtropics and high latitudes. The present study shows a distinct negative correlation between the high‐altitude cloud occurrence and the lower stratospheric water vapor mixing ratio in the tropics, providing intrinsic evidence on the delicate connection between the stratospheric‐tropospheric exchange and dehydration processes and the high‐altitude cloud activities.
Abstract. Humidity and temperature data from the Measurement of Ozone by Airbus in-service Aircraft (MOZAIC) project have been used to produce maps of probability for ice supersaturation in two 50 hPa thick layers centered around 200 and 250 hPa. As the MOZAIC data cover only international air routes, the resulting maps cover mainly the northern midlatitudes. The data of ice supersaturation have then been correlated with data of frequency of occurrence of subvisible cirrus from the Stratospheric Aerosol and Gas Experiment (SAGE II) satellite instrument. The correlation analysis provided strong indications that subvisible cirrus (SVC) is associated to ice-supersaturated regions (ISSRs), although processes are possible that can decouple SVC from ISSRs. A first trial to derive a global picture of ice supersaturation near the tropopause was performed using a measure of cirrus fractional coverage constructed from meteorological analyses of European Centre for Medium-Range Weather Forecasts and to correlate this with the supersaturation data. The correlation was only moderate (although significant), leading to the tentative conjecture that regions of frequent ice supersaturation are to be expected over the Indonesian archipelago, over the Amazonas basin, and over the northern Pacific between Japan and Canada. A final correlation analysis between the meteorological analysis data and the SVC data indicated that the formation of SVC is generally thermodynamically controlled, with the exception of the northern midlatitude SVC. The composition of the aerosol at the northern midlatitude tropopause is probably variable due to industrial emissions and air traffic. Hence the freezing properties of these particles may become important, which results in a weaker thermodynamic control of SVC formation in the northern midlatitudes.
[1] The Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) instrument observed thin cirrus clouds at and above the tropopause during its two missions in November 1994 and August 1997. A simple cloud detection scheme was developed for extinctions greater than 2 Â 10 À3 km À1 through analysis of the measured infrared spectra in the 12-mm range. Horizontal and vertical distributions of cloud occurrence frequencies are in good agreement with the Stratospheric Aerosol and Gas Experiment (SAGE) II subvisual cirrus cloud (SVC) climatology as well as SAGE measurements for the 1997 period. Seasonal variations, strong longitudinal variability, and indications of enhanced cloud occurrence frequencies in separated regions caused by El Niño events were detected in the CRISTA data set. A substantial day-to-day variability could be found throughout the tropics, and several regions with enhanced variability have been identified. In addition, a significant amount of cloud was found above the midlatitude tropopause. Backward trajectories in relation to outgoing longwave radiation (OLR) measurements and cloud observation in the troposphere by meteorological satellites suggest that about three fourths of the high clouds (>15 km) observed by CRISTA in the tropics stem from deep convection systems and the outflow of these systems. This would imply that on the order of at least one fourth of the observed cloud events are originated by other mechanisms, such as in situ formation due to cooling events on synoptic and/or gravity wave scales. For the convective generated cirrus clouds, a maximum lifetime of around 3-4 days was estimated over a wide range of latitudes. Such a long lifetime could be important for modeling the impact of cirrus clouds on radiation budget (climate) and heterogeneous chemical processes around the tropopause.
Abstract.Satellite measurements of both cloud vertical structure and cloud-radiative forcing have been used to show that during the strong 1997/98 El Nifio there was a substantial change in cloud vertical structure over the tropical Pacifc Ocean. Relative to normal years, cloud altitudes were lower in the western portion of the Pacific and higher in the eastern portion. The reason for these redistributions was a collapse of the Walker circulation and enhanced large-scale upward motion over the eastern Pacific, both caused by the lack of a zonal sea surface temperature gradient during the El Nifio. It is proposed that these cloud structure changes, which significantly impact satellite measurements of the tropical Pacific's radiation budget, would serve as one useful means of testing cloud-climate interactions in climate models.
[1] Cloud vertical distributions and radiation data from satellites taken between 1985 and 1998 were analyzed to determine the impact of clouds on outgoing longwave radiation (OLR) in the Tropics. Clouds with a 1-mm optical depth greater than 0.025 above 12 km decreased, while those below 12 km increased. The OLR mean and decadal trend were 254 Wm À2 and 3.9 Wm À2 /decade, respectively. The mean cloud and OLR results were used to derive a value of 0.36 for the tropical mean cloud longwave effective emissivity. Changes in cloud vertical distributions account for 40% of the OLR trend. A change in cloud effective emissivity of À0.026/decade could account for the remainder of the OLR changes. These changes suggest reduced mean cloud opacity, a drier troposphere, and a strengthened large-scale circulation in the Tropics during the period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.