Background: Ventilator weaning is one of the most significant challenges in the intensive care unit (ICU). Approximately 30% of patients fail to wean, resulting in prolonged use of ventilators and increased mortality. There are numerous high-performance prediction models available today, but they require a large number of parameters to predict and are thus impractical in clinical practice. Objectives: This study aims to create an artificial intelligence (AI) model for predicting weaning time and to identify the most simplified key predictors that will allow the model to achieve adequate accuracy with as few parameters as possible. Methods: This is a retrospective study of to-be-weaned patients (n = 1439) hospitalized in the cardiac ICU of Cheng Hsin General Hospital’s Department of Cardiac Surgery from November 2018 to August 2020. The patients were divided into two groups based on whether they could be weaned within 24 h (i.e., “patients weaned within 24 h” (n = 1042) and “patients not weaned within 24 h” (n = 397)). Twenty-eight variables were collected including demographic characteristics, arterial blood gas readings, and ventilation set parameters. We created a prediction model using logistic regression and compared it to other machine learning techniques such as decision tree, random forest, support vector machine (SVM), extreme gradient boosting, and artificial neural network. Forward, backward, and stepwise selection methods were used to identify significant variables, and the receiver operating characteristic curve was used to assess the accuracy of each AI model. Results: The SVM [receiver operating characteristic curve (ROC-AUC) = 88%], logistic regression (ROC-AUC = 86%), and XGBoost (ROC-AUC = 85%) models outperformed the other five machine learning models in predicting weaning time. The accuracies in predicting patient weaning within 24 h using seven variables (i.e., expiratory minute ventilation, expiratory tidal volume, ventilation rate set, heart rate, peak pressure, pH, and age) were close to those using 28 variables. Conclusions: The model developed in this research successfully predicted the weaning success of ICU patients using a few and easily accessible parameters such as age. Therefore, it can be used in clinical practice to identify difficult-to-wean patients to improve their treatment.
Endometrial carcinoma (EC) is the most common gynecological cancer. However, there is currently no routinely used biomarker for differential diagnosis of malignant and premalignant endometrial lesions. Ten-eleven translocation (TET) proteins, especially TET1, were found to play a significant role in DNA demethylation, via conversion of 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC). TET1, 5-mC, and 5-hmC expression profiles in endometrial carcinogenesis are currently unclear. We conducted a hospital-based retrospective review of the immunohistochemical expression of TET1, 5-mC, and 5-hmC in 181 endometrial samples. A “high” TET1 and 5-hmC expression score was observed in all cases of normal endometrium (100.0% and 100.0%, respectively) and in most samples of endometrial hyperplasia without atypia (90.9% and 78.8%, respectively) and atypical hyperplasia (90.6% and 93.8%, respectively), but a “high” score was found in only less than half of the EC samples (48.8% and 46.5%, respectively). The TET1 and 5-hmC expression scores were significantly higher in normal endometrium and premalignant endometrial lesions than in ECs (p < 0.001). A “high” 5-mC expression score was observed more frequently for ECs (81.4%) than for normal endometrium (40.0%), endometrial hyperplasia without atypia (51.5%), and atypical hyperplasia (53.1%) (p < 0.001). We also found that TET1 mRNA expression was lower in ECs compared to normal tissues (p = 0.0037). TET1 immunohistochemistry (IHC) scores were highly proportional to the TET1 mRNA levels and we summarize that the TET1 IHC scoring can be used for biomarker determinations. Most importantly, a higher TET1 score in EC cases was associated with a good overall survival (OS) rate, with a hazard ratio (HR) of 0.31 for death (95% confidence interval: 0.11–0.84). Our findings suggest that TET1, 5-mC, and 5-hmC expression is a potential histopathology biomarker for the differential diagnosis of malignant and premalignant endometrial lesions. TET1 is also a potential prognostic marker for EC.
(1) Background: Posterior circulation ischemic stroke has high mortality and disability rates and requires an early prediction prognosis to provide the basis for an interventional approach. Current quantitative measures are only able to accurately assess the prognosis of patients using magnetic resonance imaging (MRI). However, it is difficult to obtain MRI images in critically urgent cases. Therefore, the development of a noncontrast CT-based rapid-assist tool is needed to enhance the value of the clinical application. (2) Objective: This study aimed to develop an auxiliary-annotating noncontrast CT-efficient tool, which is based on a deep learning model, to provide a quantitative scale and the prognosis of posterior circulation ischemic stroke patients. (3) Methods: A total of 31 patients with posterior circulation ischemic stroke, diagnosed in the stroke registry at the Tri-Service General Hospital from November 2019 to July 2020, were included in the study, with a total of 578 CT images collected from noncontrast CT and MRI that were ≤ 3 days apart. A 5-fold cross validation was used to develop an image segmentation model to identify nine posterior circulation structures, and intersection over union (IoU) was used to assess the ability of the model to identify each structure. A quantitative score was integrated to assess the importance of the proportion of ischemic lesions in each posterior circulation structure, and the ROC curve was compared with the semiquantitative score for prognostic power. The prognoses of the patients were defined into two groups of 18 patients. An mRS score of 0–2 at discharge was defined as a good prognosis, while an mRS score of 3–6 was deemed to be a poor prognosis. (4) Results: The performance of the image segmentation model for identifying the nine posterior circulation structures in noncontrast CT images was evaluated. The IoU of the left cerebellum was 0.78, the IoU of the right cerebellum was 0.79, the IoU of the left occipital lobe was 0.74, the IoU of the right occipital lobe was 0.68, the IoU of the left thalamus was 0.73, the IoU of the right thalamus was 0.75, the IoU of the medulla oblongata was 0.82, and the IoU of the midbrain was 0.83. The prognostic AUC of posterior circulation patients predicted using a quantitative integrated score was 0.74, which was significantly higher than that of the pc-ASPECTS (AUC = 0.63, p = 0.035), with a sensitivity of 0.67 and a specificity of 0.72. (5) Conclusions: In this study, a deep learning model was used to develop a noncontrast CT-based quantitative integrated score tool, which is an effective tool for clinicians to assess the prognosis of posterior circulation ischemic stroke.
Background: Chronic kidney disease (CKD) is a public health issue, and an independent risk factor for cardiovascular disease. The peroxisome proliferator-activated receptor gamma (PPARG) plays an important role in the cardiovascular system. Previous studies have examined one important exon polymorphism, Pro12Ala, in PPARG with respect to mortality of CKD patients, but the results were inconsistent and current evidence is insufficient to support a strong conclusion. This study aimed to examine the correlation between Pro12Ala gene polymorphism and mortality among Asians with CKD by trial sequential analysis (TSA).Methods: The research was divided into observational research and meta-analysis. For the cohort study, 767 subjects from dialysis centers in Taipei were selected as samples, and tracked from December 2015 to February 2017. For the meta-analysis, relevant literature from “PubMed” and “Embase” databases (until December 2016), was searched and TSA was used to verify the results. In order to achieve the best evidence hierarchies, our retrospective cohort study was added to the meta-analysis and the TSA.Results: The combined sample size for Asian was 1,685 after adding our cohort study, and there was no significant correlation between PPARG Pro12Ala and mortality by the allele model (RR: 0.85, 95% CI: 0.39–1.83, I2 = 79.3%). Under the parameter setting with the RR value of 1.5, TSA estimation presented that the cumulative sample size entered into the futility area, and it confirmed the conclusion in this study.Conclusion: We found that PPARG Pro12Ala gene polymorphism was not related to mortality in CKD Asians patients, and validated our conclusion using TSA after adding our sample.
Background Several meta-analyses of the relationship between endothelial nitric oxide synthase (eNOS) T-786C gene polymorphism and chronic kidney disease (CKD) have been published. However, the results of these studies were inconsistent, and it is undetermined whether sample sizes are sufficient to reach a definite conclusion. Objective To elucidate the relationship between T-786C and CKD by combining previous studies with our case-control sample and incorporate trial sequential analysis (TSA) to verify whether the sample size is adequate to draw a definite conclusion. Methods PubMed and Embase databases were searched for relevant articles on eNOS T-786C and CKD before February 28, 2021. TSA was also incorporated to ascertain a conclusion. A total of 558 hemodialysis cases in the case-control study was recruited from nine dialysis centers in the northern area of Taiwan in 2020. Additionally, 640 healthy subjects of the control group, with estimated glomerular filtration rate (eGFR) ≥ 60 mL/min/1.73 m2, were selected from participants of the annual elderly health examination program at the Tri-Service General Hospital. The functional analysis was based on eQTL data from GTExPortal. Results After screening with eligibility criteria, 15 papers were included and eventually combined in a meta-analysis. The result of the TSA showed that the sample size for Caucasians was adequate to ascertain the correlation between eNOS T-786C and CKD but was insufficient for Asians. Therefore, we added our case-control samples (n = 1198), though not associated with CKD (odds ratio [OR] = 1.01, 95% confidence interval [CI] = 0.69–1.46), into a meta-analysis, which supported that eNOS T-786C was significantly associated with CKD in Asians (OR = 1.39, 95% CI = 1.04–1.85) by using an adequate cumulative sample size (n = 4572) analyzed by TSA. Data of eQTL from GTEx showed that T-786C with the C minor allele exhibited relatively lower eNOS mRNA expression in whole blood, indicating the hazardous role of eNOS T-786C in CKD. Conclusions eNOS T-786C genetic polymorphism was of conclusive significance in the association with CKD among Asians in our meta-analysis. Our case-control samples play a decisive role in changing conclusions from indefinite to definite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.