The composition of the gut microbiota and excessive ingestion of high-fat diets (HFD) are considered to be important factors for development of obesity. In this review we describe a coherent mechanism of action for the development of obesity, which involves the composition of gut microbiota, HFD, low-grade inflammation, expression of fat translocase and scavenger receptor CD36, and the scavenger receptor class B type 1 (SR-BI). SR-BI binds to both lipids and lipopolysaccharide (LPS) from Gram-negative bacteria, which may promote incorporation of LPS in chylomicrons (CMs). These CMs are transported via lymph to the circulation, where LPS is transferred to other lipoproteins by translocases, preferentially to HDL. LPS increases the SR-BI binding, transcytosis of lipoproteins over the endothelial barrier,and endocytosis in adipocytes. Especially large size adipocytes with high metabolic activity absorb LPS-rich lipoproteins. In addition, macrophages in adipose tissue internalize LPS-lipoproteins. This may contribute to the polarization from M2 to M1 phenotype, which is a consequence of increased LPS delivery into the tissue during hypertrophy. In conclusion, evidence suggests that LPS is involved in the development of obesity as a direct targeting molecule for lipid delivery and storage in adipose tissue.
Purpose: A 1.5 T MR Linac (MRL) has recently become available. MRL treatment workflows (WF) include online plan adaptation based on daily MR images (MRI). This study reports initial clinical experiences after five months of use in terms of patient compliance, cases, WF timings, and dosimetric accuracy. Method and materials: Two different WF were used dependent on the clinical situation of the day; Adapt To Position WF (ATP) where the reference plan position is adjusted rigidly to match the position of the targets and the OARs, and Adapt To Shape WF (ATS), where a new plan is created to match the anatomy of the day, using deformable image registration. Both WFs included three 3D MRI scans for plan adaptation, verification before beam on, and validation during IMRT delivery. Patient compliance and WF timings were recorded. Accuracy in dose delivery was assessed using a cylindrical diode phantom. Results: 19 patients have completed their treatment receiving a total of 176 fractions. Cases vary from prostate treatments (60 Gy/20F) to SBRT treatments of lymph nodes (45 Gy/3F) and castration by ovarian irradiation (15 Gy/3F). The median session time (patient in to patient out) for 127 ATPs was 26[21-78] min, four fractions lasted more than 45 minutes due to additional plan adaptation. For the 49 ATSs a median time of 12[1-24] min was used for contouring resulting in a total median session time of 42[29-91] min. Three SBRT fractions lasted more than an hour. The time on the MRL couch was well tolerated by the patients. The median gamma pass rate (2mm,2% global max) for the adapted plans was 99.2[93.4-100]%, showing good agreement between planned and delivered dose. Conclusion: MRL treatments, including daily MRIs, plan adaptation and accurate dose delivery is possible within a clinically acceptable timeframe and is well tolerated by the patients.
Owing to their capacity to induce strong, sequence-specific, gene silencing in cells, short interfering RNAs (siRNAs) represent new potential therapeutic tools. This development requires, however, new safe and efficient in vivo siRNA delivery methods. In the present technical report, we show that electrically mediated siRNA transfer can suppress transgene expression in adult mice muscles. Using electropulsation for siRNA delivery opens the way for a targeted gene silencing on a broad range of tissues. Clinical applications of electropulsation for delivery of other classes of molecules are under trials. We reported that gene silencing was efficiently obtained in vivo in an adult mammal (mouse) with chemically synthesized siRNA after its electrical delivery. The associated gene silencing was followed on the same animal and lasted at least 11 days. Gene silencing was obtained in muscles not only on young adult mice but also on much older animals. No tissue damages were detected under our electrical conditions. Therefore, this method should provide an efficient approach for a localized delivery of siRNAs in various tissues and organs. Gene Therapy (2005) 12, 246-251.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.