We present a simulation model designed to determine the impact on congestion of policies for dealing with travel time uncertainty. The model combines a supply side model of congestion delay with a discrete choice econometric demand model that predicts scheduling choices for morning commute trips. The supply model describes congestion technology and exogenously specifies the probability, severity, and duration of non-recurrent events. From these, given traffic volumes, a distribution of travel times is generated, from which a mean, a standard deviation, and a probability of arriving late are calculated. The demand model uses these outputs from the supply model as independent variables and choices are forecast using sample enumeration and a synthetic sample of work start times and free flow travel times. The process is iterated until a stable congestion pattern is achieved. We report on the components of expected cost and the average travel delay for selected simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.