Summary Height is a highly heritable, classic polygenic trait with ∼700 common associated variants identified so far through genome-wide association studies. Here, we report 83 height-associated coding variants with lower minor allele frequencies (range of 0.1-4.8%) and effects of up to 2 cm/allele (e.g. in IHH, STC2, AR and CRISPLD2), >10 times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (+1-2 cm/allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes mutated in monogenic growth disorders and highlight new biological candidates (e.g. ADAMTS3, IL11RA, NOX4) and pathways (e.g. proteoglycan/glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate to large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.
IMPORTANCE Human genetic studies have indicated that plasma lipoprotein(a) (Lp[a]) is causally associated with the risk of coronary heart disease (CHD), but randomized trials of several therapies that reduce Lp(a) levels by 25% to 35% have not provided any evidence that lowering Lp(a) level reduces CHD risk.OBJECTIVE To estimate the magnitude of the change in plasma Lp(a) levels needed to have the same evidence of an association with CHD risk as a 38.67-mg/dL (ie, 1-mmol/L) change in low-density lipoprotein cholesterol (LDL-C) level, a change that has been shown to produce a clinically meaningful reduction in the risk of CHD. DESIGN, SETTING, AND PARTICIPANTSA mendelian randomization analysis was conducted using individual participant data from 5 studies and with external validation using summarized data from 48 studies. Population-based prospective cohort and case-control studies featured 20 793 individuals with CHD and 27 540 controls with individual participant data, whereas summarized data included 62 240 patients with CHD and 127 299 controls. Data were analyzed from November 2016 to March 2018.EXPOSURES Genetic LPA score and plasma Lp(a) mass concentration. MAIN OUTCOMES AND MEASURES Coronary heart disease.RESULTS Of the included study participants, 53% were men, all were of white European ancestry, and the mean age was 57.5 years. The association of genetically predicted Lp(a) with CHD risk was linearly proportional to the absolute change in Lp(a) concentration. A 10-mg/dL lower genetically predicted Lp(a) concentration was associated with a 5.8% lower CHD risk (odds ratio [OR], 0.942; 95% CI, 0.933-0.951; P = 3 × 10 −37 ), whereas a 10-mg/dL lower genetically predicted LDL-C level estimated using an LDL-C genetic score was associated with a 14.5% lower CHD risk (OR, 0.855; 95% CI, 0.818-0.893; P = 2 × 10 −12 ). Thus, a 101.5-mg/dL change (95% CI, 71.0-137.0) in Lp(a) concentration had the same association with CHD risk as a 38.67-mg/dL change in LDL-C level. The association of genetically predicted Lp(a) concentration with CHD risk appeared to be independent of changes in LDL-C level owing to genetic variants that mimic the relationship of statins, PCSK9 inhibitors, and ezetimibe with CHD risk. CONCLUSIONS AND RELEVANCEThe clinical benefit of lowering Lp(a) is likely to be proportional to the absolute reduction in Lp(a) concentration. Large absolute reductions in Lp(a) of approximately 100 mg/dL may be required to produce a clinically meaningful reduction in the risk of CHD similar in magnitude to what can be achieved by lowering LDL-C level by 38.67 mg/dL (ie, 1 mmol/L).
Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, non-coding variants from which pinpointing causal genes remains challenging. Here, we combined data from 718,734 individuals to discover rare and low-frequency (MAF<5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which eight in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2, ZNF169) newly implicated in human obesity, two (MC4R, KSR2) previously observed in extreme obesity, and two variants in GIPR. Effect sizes of rare variants are ~10 times larger than of common variants, with the largest effect observed in carriers of an MC4R stop-codon (p.Tyr35Ter, MAF=0.01%), weighing ~7kg more than non-carriers. Pathway analyses confirmed enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically-supported therapeutic targets to treat obesity.
BACKGROUND The European Atherosclerosis Society–European Federation of Clinical Chemistry and Laboratory Medicine Consensus Panel aims to provide recommendations to optimize atherogenic lipoprotein quantification for cardiovascular risk management. CONTENT We critically examined LDL cholesterol, non-HDL cholesterol, apolipoprotein B (apoB), and LDL particle number assays based on key criteria for medical application of biomarkers. (a) Analytical performance: Discordant LDL cholesterol quantification occurs when LDL cholesterol is measured or calculated with different assays, especially in patients with hypertriglyceridemia >175 mg/dL (2 mmol/L) and low LDL cholesterol concentrations <70 mg/dL (1.8 mmol/L). Increased lipoprotein(a) should be excluded in patients not achieving LDL cholesterol goals with treatment. Non-HDL cholesterol includes the atherogenic risk component of remnant cholesterol and can be calculated in a standard nonfasting lipid panel without additional expense. ApoB more accurately reflects LDL particle number. (b) Clinical performance: LDL cholesterol, non-HDL cholesterol, and apoB are comparable predictors of cardiovascular events in prospective population studies and clinical trials; however, discordance analysis of the markers improves risk prediction by adding remnant cholesterol (included in non-HDL cholesterol) and LDL particle number (with apoB) risk components to LDL cholesterol testing. (c) Clinical and cost-effectiveness: There is no consistent evidence yet that non-HDL cholesterol-, apoB-, or LDL particle-targeted treatment reduces the number of cardiovascular events and healthcare-related costs than treatment targeted to LDL cholesterol. SUMMARY Follow-up of pre- and on-treatment (measured or calculated) LDL cholesterol concentration in a patient should ideally be performed with the same documented test method. Non-HDL cholesterol (or apoB) should be the secondary treatment target in patients with mild to moderate hypertriglyceridemia, in whom LDL cholesterol measurement or calculation is less accurate and often less predictive of cardiovascular risk. Laboratories should report non-HDL cholesterol in all standard lipid panels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.