Flavin-dependent halogenases catalyse halogenation of aromatic compounds. In most cases, this reaction proceeds with high regioselectivity and requires only the presence of FADH2, oxygen, and halide salts. Since marine habitats contain high concentrations of halides, organisms populating the oceans might be valuable sources of yet undiscovered halogenases. A new Hidden-Markov-Model (HMM) based on the PFAM tryptophan halogenase model was used for the analysis of marine metagenomes. Eleven metagenomes were screened leading to the identification of 254 complete or partial putative flavin-dependent halogenase genes. One predicted halogenase gene (brvH) was selected, codon optimised for E. coli, and overexpressed. Substrate screening revealed that this enzyme represents an active flavin-dependent halogenase able to convert indole to 3-bromoindole. Remarkably, bromination prevails also in a large excess of chloride. The BrvH crystal structure is very similar to that of tryptophan halogenases but reveals a substrate binding site that is open to the solvent instead of being covered by a loop.
The recently described flavin-dependent halogenase BrvH is able to catalyse both the bromination and chlorination of indole, but shows significantly higher bromination activity. BrvH was annotated as a tryptophan halogenase, but does not accept tryptophan as a substrate. Its native substrate remains unknown. A predictive model with the data available for BrvH was analysed. A training set of compounds tested in vitro was docked into the active site of a complete protein model based on the X-ray structure of BrvH. The atoms not resolved experimentally were modelled by using molecular mechanics force fields to obtain this protein model. Furthermore, docking poses for the substrates and known non-substrates have been calculated. Parameters like distance, partial charge and hybridization state were analysed to derive rules for predicting activity. With this model for activity of the BrvH, a virtual screening suggested several structures for potential substrates. Some of the compounds preselected in this way were tested in vitro, and several could be verified as convertible substrates. Based on information on halogenated natural products, a new dataset was created to specifically search for natural products as substrates/products, and virtual screening in this database yielded further hits.
In recent decades, the demand for palm oil has constantly increased and with it the cultivation of oil palms. After a period of 25 years, the oil yield of the palm trees decreases and they are felled. The trees are cut into pieces and remain on the plantations. However, due to their high moisture and sugar content, fungi and molds cause problems for replanting. The use of the wood for the timber industry is difficult due to its structural characteristics. Biotechnological processes use microorganisms to produce relevant industrial products. The basis for each process is a culture medium that contains all necessary nutrients, especially carbohydrates. The culture medium makes up a high percentage of the costs, so alternative, cheaper substrates are preferred. In this review, we show and compare different analyses of the sap mechanically pressed from the oil palm trunk regarding its sugar and nutrient content. The total sugar concentration in the palm sap varies between 16.97–140 g L−1 and it is mainly composed of glucose, fructose, and sucrose. The comparison with common nutrient media and the results of fermentation processes already carried out on a laboratory scale show that palm sap offers great potential as a fermentation medium for biotechnological conversion into industrially relevant products. © 2021 The Authors Biofuels, Bioproducts and Biorefining published by Society of Chemical Industry and John Wiley & Sons, Ltd
Zonulin is a physiological modulator of intercellular tight junctions, which upregulation is involved in several diseases like celiac disease (CeD). The polyQ gliadin fragment binds to the CXCR3 chemokine receptor that activates zonulin upregulation, leading to increased intestinal permeability in humans. Here, we report a general hypothesis based on the structural connection between the polyQ sequence of the immunogenic CeD protein, gliadin, and enteric coccidian parasites proteins. Firstly, a novel interaction pathway between the parasites and the host is described based on the structural similarities between polyQ gliadin fragments and the parasite proteins. Secondly, a potential connection between coccidial infections as a novel environmental trigger of CeD is hypothesized. Therefore, this report represents a promising breakthrough for coccidian research and points out the potential role of coccidian parasites as a novel trigger of CeD that might define a preventive strategy for gluten-related disorders in general. Also see the video abstract here: https://youtu.be/oMaQasStcFI
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.