Over its lifetime in a fuel cell electric vehicle, a polymer electrolyte membrane fuel cell inevitably suffers from certain duration of dry operational conditions, where significant performance losses of the fuel cell take place. In this study, we investigate the activity changes of the fuel cell after a prolonged degradation protocol under dry operational condition, followed by various recovery procedures under wet conditions. The utilization of diluted air on the cathode side is found to be advantageous for the recovery due to the superior heat and water management. This more efficient recovery protocol allows the deconvolution of reversible and irreversible voltages losses after dry operations. A subsequent mechanistic study reveals an irreversible decrease of the effective ionomer coverage on the catalyst particles, while the proton conductivity of the catalyst layer drops. These observations point towards ionomer structural changes caused by the dry conditions. This is confirmed by post-mortem analysis via scanning electron microscope, showing clearly that ionomer redistributes and migrates, an additional mechanism which leads to the performance losses. Overall, the degradation mechanisms seem to be mitigated by higher ionomer content in the catalyst layer, while the investigated surface modification of carbon support shows minor sensitivities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.