IntroductionTamoxifen therapy reduces the risk of recurrence and prolongs the survival of oestrogen-receptor-positive patients with breast cancer. Even if most patients benefit from tamoxifen, many breast tumours either fail to respond or become resistant. Because tamoxifen is extensively metabolised by polymorphic enzymes, one proposed mechanism underlying the resistance is altered metabolism. In the present study we investigated the prognostic and/or predictive value of functional polymorphisms in cytochrome P450 3A5 CYP3A5 (*3), CYP2D6 (*4), sulphotransferase 1A1 (SULT1A1; *2) and UDP-glucuronosyltransferase 2B15 (UGT2B15; *2) in tamoxifen-treated patients with breast cancer.MethodsIn all, 677 tamoxifen-treated postmenopausal patients with breast cancer, of whom 238 were randomised to either 2 or 5 years of tamoxifen, were genotyped by using PCR with restriction fragment length polymorphism or PCR with denaturing high-performance liquid chromatography.ResultsThe prognostic evaluation performed in the total population revealed a significantly better disease-free survival in patients homozygous for CYP2D6*4. For CYP3A5, SULT1A1 and UGT2B15 no prognostic significance was observed. In the randomised group we found that for CYP3A5, homozygous carriers of the *3 allele tended to have an increased risk of recurrence when treated for 2 years with tamoxifen, although this was not statistically significant (hazard ratio (HR) = 2.84, 95% confidence interval (CI) = 0.68 to 11.99, P = 0.15). In the group randomised to 5 years' tamoxifen the survival pattern shifted towards a significantly improved recurrence-free survival (RFS) among CYP3A5*3-homozygous patients (HR = 0.20, 95% CI = 0.07 to 0.55, P = 0.002). No reliable differences could be seen between treatment duration and the genotypes of CYP2D6, SULT1A1 or UGT2B15. The significantly improved RFS with prolonged tamoxifen treatment in CYP3A5*3 homozygotes was also seen in a multivariate Cox model (HR = 0.13, CI = 0.02 to 0.86, P = 0.03), whereas no differences could be seen for CYP2D6, SULT1A1 and UGT2B15.ConclusionThe metabolism of tamoxifen is complex and the mechanisms responsible for the resistance are unlikely to be explained by a single polymorphism; instead it is a combination of several mechanisms. However, the present data suggest that genetic variation in CYP3A5 may predict response to tamoxifen therapy.
Background Tamoxifen is widely used as endocrine therapy for oestrogen-receptor-positive breast cancer. However, many of these patients experience recurrence despite tamoxifen therapy by incompletely understood mechanisms. In the present report we propose that tamoxifen resistance may be due to differences in activity of metabolic enzymes as a result of genetic polymorphism. Cytochrome P450 2D6 (CYP2D6) and sulfotransferase 1A1 (SULT1A1) are polymorphic and are involved in the metabolism of tamoxifen. The CYP2D6*4 and SULT1A1*2 genotypes result in decreased enzyme activity. We therefore investigated the genotypes of CYP2D6 and SULT1A1 in 226 breast cancer patients participating in a trial of adjuvant tamoxifen treatment in order to validate the benefit from the therapy.
The International Tamoxifen Pharmacogenomics Consortium was established to address the controversy regarding cytochrome P450 2D6 (CYP2D6) status and clinical outcomes in tamoxifen therapy. We performed a meta-analysis on data from 4,973 tamoxifen-treated patients (12 globally distributed sites). Using strict eligibility requirements (postmenopausal women with estrogen receptor–positive breast cancer, receiving 20 mg/day tamoxifen for 5 years, criterion 1); CYP2D6 poor metabolizer status was associated with poorer invasive disease–free survival (IDFS: hazard ratio = 1.25; 95% confidence interval = 1.06, 1.47; P = 0.009). However, CYP2D6 status was not statistically significant when tamoxifen duration, menopausal status, and annual follow-up were not specified (criterion 2, n = 2,443; P = 0.25) or when no exclusions were applied (criterion 3, n = 4,935; P = 0.38). Although CYP2D6 is a strong predictor of IDFS using strict inclusion criteria, because the results are not robust to inclusion criteria (these were not defined a priori), prospective studies are necessary to fully establish the value of CYP2D6 genotyping in tamoxifen therapy.
BackgroundCell fusion is a natural process in normal development and tissue regeneration. Fusion between cancer cells and macrophages generates metastatic hybrids with genetic and phenotypic characteristics from both maternal cells. However, there are no clinical markers for detecting cell fusion in clinical context. Macrophage-specific antigen CD163 expression in tumor cells is reported in breast and colorectal cancers and proposed being caused by macrophages-cancer cell fusion in tumor stroma. The purpose of this study is to examine the cell fusion process as a biological explanation for macrophage phenotype in breast.MethodsMonocytes, harvested from male blood donor, were activated to M2 macrophages and co-cultured in ThinCert transwell system with GFP-labeled MCF-7 cancer cells. MCF7/macrophage hybrids were generated by spontaneous cell fusion, isolated by fluorescence-activated cell sorting and confirmed by fluorescence microscopy, short tandem repeats analysis and flow cytometry. CD163 expression was evaluated in breast tumor samples material from 127 women by immunohistochemistry.ResultsMCF-7/macrophage hybrids were generated spontaneously at average rate of 2 % and showed phenotypic and genetic traits from both maternal cells. CD163 expression in MCF-7 cells could not be induced by paracrine interaction with M2-activated macrophages. CD163 positive cancer cells in tumor sections grew in clonal collection and a cutoff point >25 % of positive cancer cells was significantly correlated to disease free and overall survival.ConclusionsIn conclusion, macrophage traits in breast cancer might be caused by cell fusion rather than explained by paracrine cellular interaction. These data provide new insights into the role of cell fusion in breast cancer and contributes to the development of clinical markers to identify cell fusion.
The present study suggests that MnSOD may be implicated in breast carcinogenesis in young women.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.