Hyperuricemia is a metabolic disorder caused by increased uric acid (UA) synthesis or decreased UA excretion. Changes in eating habits have led to an increase in the consumption of purine-rich foods, which is closely related to hyperuricemia. Therefore, decreased purine absorption, increased UA excretion, and decreased UA synthesis are the main strategies to ameliorate hyperuricemia. This study aimed to screen the lactic acid bacteria (LAB) with purine degrading ability and examine the serum UA-lowering effect in a hyperuricemia mouse model. As a result, Lacticaseibacillus paracasei MJM60396 was selected from 22 LAB isolated from fermented foods for 100% assimilation of inosine and guanosine. MJM60396 showed probiotic characteristics and safety properties. In the animal study, the serum uric acid was significantly reduced to a normal level after oral administration of MJM60396 for 3 weeks. The amount of xanthine oxidase, which catalyzes the formation of uric acid, decreased by 81%, and the transporters for excretion of urate were upregulated. Histopathological analysis showed that the damaged glomerulus, Bowman’s capsule, and tubules of the kidney caused by hyperuricemia was relieved. In addition, the impaired intestinal barrier was recovered and the expression of tight junction proteins, ZO-1 and occludin, was increased. Analysis of the microbiome showed that the relative abundance of Muribaculaceae and Lachnospiraceae bacteria, which were related to the intestinal barrier integrity, was increased in the MJM60396 group. Therefore, these results demonstrated that L. paracasei MJM60396 can prevent hyperuricemia in multiple ways by absorbing purines, decreasing UA synthesis by suppressing xanthine oxidase, and increasing UA excretion by regulating urate transporters.
Non-alcoholic fatty liver disease (NAFLD) is a common liver disease with a rapidly increasing number of cases worldwide. This study aimed to evaluate the effects of Lactobacillus sakei MJM60958 (MJM60958) on NAFLD in vitro and in vivo. In in vitro tests, MJM60958 significantly inhibited lipid accumulation by 46.79% in HepG2 cells stimulated with oleic acid and cholesterol (OA-C). Moreover, MJM60958 showed safe and probiotic characteristics in vitro. In the animal study, MJM60958 administration in a high-fat diet-induced NAFLD mouse model significantly reduced body weight and liver weight, and controlled aspartate aminotransferase (ALT), aspartate transaminase (AST), triglyceride (TG), urea nitrogen (BUN), and uric acid (UA) levels in the blood, which are features of NAFLD. Further, treatment with MJM60958 also reduced steatosis scores in liver tissues, serum leptin and interleukin, and increased serum adiponectin content. Moreover, administration of MJM60958 resulted in a significantly decreased expression of some genes and proteins which are related to lipid accumulation, such as fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and sterol regulatory element-binding protein 1 (SREBP1), and also upregulated genes and protein expression of lipid oxidation such as peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1a (CPT1A). Administration of MJM60958 increased the relative abundance of specific microbial taxa such as Verrucomicrobia, which are abundant in non-NAFLD mice, and reduced Firmicutes, which are a major group in NAFLD mice. MJM60958 affected the modulation of gut microbiota and altered the strain profile of short-chain fatty acids (SCFAs) production in the cecum by reduced lactic acid and enhanced acetic acid production. Overall, MJM60958 showed potential as a probiotic that can prevent and treat NAFLD.
Non-alcoholic fatty liver disease (NALFD) is a disease characterized by liver steatosis. The liver is a key organ involved in the metabolism of fat, protein, and carbohydrate, enzyme activation, and storage of glycogen, which is closely related to the intestine by the bidirectional relation of the gut-liver axis. Abnormal intestinal microbiota composition can affect energy metabolism and lipogenesis. In this experiment, we investigated the beneficial effect of Lactobacillus reuteri MJM60668 on lipid metabolism and lipogenesis. C57BL/6 mice were fed a high-fat diet (HFD) and orally administrated with MJM60668. Our results showed that mice treated with MJM60668 significantly decreased liver weight and liver/body weight ratio, without affecting food intake. Serum levels of ALT, AST, TG, TCHO, and IL-1β in mice fed with MJM60668 were decreased compared to the HFD group. Investigation of gene and protein expression on the lipogenesis and lipid metabolism showed that the expression of ACC, FAS, and SREBP was decreased, and PPARα and CPT was increased. Furthermore, an increase of adiponectin in serum was shown in our experiment. Moreover, serum IL-1β level was also significantly decreased in the treated mice. These results suggested that MJM60668 can strongly inhibit lipogenesis, enhance fatty acid oxidation, and suppress inflammation. Additionally, supplementation of MJM60668 increased the proportion of Akkermansiaceae and Lachnospiracea, confirming a potential improvement of gut microbiota, which is related to mucus barrier and decrease of triglycerides levels.
Gut microbiota are known to play an important role in obesity. Enterobacter cloacae, a Gram-negative bacterium, has been considered a pathogenic bacterium related to obesity in the gut. In this study, we established an obesity model of C. elegans by feeding E. cloacae combined with a high glucose diet (HGD), which significantly induced lipid accumulation. An anti-lipid mechanism study revealed that the fatty acid composition and the expression level of fat metabolism-related genes were altered by feeding E. cloacae to C. elegans under HGD conditions. Lactic acid bacteria that showed antagonistic activity against E. cloacae were used to screen anti-obesity candidates in this model. Among them, L. pentosus MJM60383 (MJM60383) showed good antagonistic activity. C. eleans fed with MJM60383 significantly reduced lipid accumulation and triglyceride content. The ratio of C18:1D9/C18:0 was also changed in C. elegans by feeding MJM60383. In addition, the expression level of genes related to fatty acid synthesis was significantly decreased and the genes related to fatty acid β-oxidation were up-regulated by feeding MJM60383. Moreover, MJM60383 also exhibited a high adhesive ability to Caco-2 cells and colonized the gut of C. elegans. Thus, L. pentosus MJM60383 can be a promising candidate for anti-obesity probiotics. To the best of our knowledge, this is the first report that uses E. cloacae combined with a high-glucose diet to study the interactions between individual pathogens and probiotics in C. elegans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.