Aminodeoxychorismate synthase is part of a heterodimeric complex that catalyzes the two-step biosynthesis of 4-amino-4-deoxychorismate, a precursor of p-aminobenzoate and folate in microorganisms. In the first step, a glutamine amidotransferase encoded by the pabA gene generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by aminodeoxychorismate synthase, the product of the pabB gene. Here we report the X-ray crystal structure of Escherichia coli PabB determined in two different crystal forms, each at 2.0 A resolution. The 453-residue monomeric PabB has a complex alpha/beta fold which is similar to that seen in the structures of homologous, oligomeric TrpE subunits of several anthranilate synthases of microbial origin. A comparison of the structures of these two classes of chorismate-utilizing enzymes provides a rationale for the differences in quaternary structures seen for these enzymes, and indicates that the weak or transient association of PabB with PabA during catalysis stems at least partly from a limited interface for protein interactions. Additional analyses of the structures enabled the tentative identification of the active site of PabB, which contains a number of residues implicated from previous biochemical and genetic studies to be essential for activity. Differences in the structures determined from phosphate- and formate-grown crystals, and the location of an adventitious formate ion, suggest that conformational changes in loop regions adjacent to the active site may be needed for catalysis. A surprising finding in the structure of PabB was the presence of a tryptophan molecule deeply embedded in a binding pocket that is analogous to the regulatory site in the TrpE subunits of the anthranilate synthases. The strongly bound ligand, which cannot be dissociated without denaturation of PabB, may play a structural role in the enzyme since there is no effect of tryptophan on the enzymic synthesis of aminodeoxychorismate. Extensive sequence similarity in the tryptophan-binding pocket among several other chorismate-utilizing enzymes, including isochorismate synthase, suggests that they too may bind tryptophan for structural integrity, and corroborates early ideas on the evolution of this interesting enzyme family.
The cDNA, coding for the first metal-binding domain (MBD1) of Menkes protein, was cloned into the T7-system based vector, pCA. The T7 lysozyme-encoding plasmid, pLysS, is shown to be crucial for expression, suggesting that the protein is toxic to the cells. Adding copper to the growth medium did not affect the plasmid stability. MBD1 is purified in two steps with a typical yield of 12 mg´L 21 . Menkes protein, a P-type ATPase, contains a sequence GMXCXSC that is repeated six times, at the N-terminus. The paired cysteine residues are involved in metal binding. MBD1 has only two cysteine residues, which can exist as free thiol groups (reduced), as a disulphide bond (oxidized) or bound to a metal ion [e.g. Cu(I)-MBD1]. These three MBD1 forms have been investigated using CD. No major spectral change was seen between the different MBD1 forms, indicating that the folding is not changed upon metal binding.A copper-bound MBD1 was also studied by EPR, and the lack of an EPR signal suggests that the oxidation state of copper bound to MBD1 is Cu(I). Cu(I) binding studies were performed by equilibrium dialysis and revealed a stoichiometry of 1 : 1 and an apparent K d = 46 mm. Oxidized MBD1, however, is not able to bind copper. Different copper complexes were investigated for their ability to reconstitute apo±MBD1. Given the same total copper concentration CuCl 4 3± was superior to Cu(I)±thiourea (structural analogue of metallothionein) and Cu(I)±glutathione (used at fivefold higher copper concentration) although the latter two were able to partially reconstitute apo±MBD1. Cu(II) was not able to reconstitute apo±MBD1, presumably due to Cu(II)-induced oxidation of the thiol groups. Based on our results, glutathione and/or metallothionein are likely candidates for the in vivo incorporation of copper to Menkes protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.