Abstract:The genus Gnaphalium, a herb distributed worldwide, comprises approximately 200 species of the Compositae (Asteraceae) family that belongs to the tribe Gnaphalieae. Some species are traditionally used as wild vegetables and in folk medicine. This review focuses on the phytochemical investigations and biological studies of plants from the genus Gnaphalium over the past few decades. More than 125 chemical constituents have been isolated from the genus Gnaphalium, including flavonoids, sesquiterpenes, diterpenes, triterpenes, phytosterols, anthraquinones, caffeoylquinic acid derivatives, and other compounds. The extracts of this genus, as well as compounds isolated from it, have been demonstrated to possess multiple pharmacological activities such as antioxidant, antibacterial and antifungal, anti-complement, antitussive and expectorant, insect antifeedant, cytotoxic, anti-inflammatory, antidiabetic and antihypouricemic properties. The present review compiles the information available on this genus because of its relevance to food and ethnopharmacology and the potential therapeutic uses of these species.
The aim of our study was to clarify the apoptosis pathway induced by aloe emodin, an hydroxyanthraquinone present in aloe vera leaves, in rat hepatic stellate cells transformed by simian virus 40 (t-HSC/Cl-6), which retain the features of activated rat stellate cells. Apoptosis was determined by DNA fragmentation, caspase activity assay and western blotting analysis. Treatment of t-HSC/Cl-6 cells with 12.5, 25, or 50 mM aloe emodin inhibited t-HSC/Cl-6 cell viability in a dose-and time-dependent manner. The induction of apoptosis by aloe emodin was confirmed by typical DNA ladder formation and annexin v-propidium iodide flow-cytometric analysis. Aloe emodin treatment of t-HSC/Cl-6 cells caused activation of caspase-3 and caspase-9, detected with a caspase activity assay, although no change was observed in caspase-8 activity. Western blotting showed caspase-3 and caspase-9 active forms and the subsequent proteolytic cleavage of poly(ADP-ribose) polymerase. Aloe emodin induced mitochondrial membrane depolarization. Our data also show that cytochrome c increased in the cytosol but decreased in the mitochondria in a time-dependent manner. Increased Bax and unchanged Bcl-2 levels resulted in an increased Bax/Bcl-2 ratio. Thus, our research provides evidence that aloe emodininduced apoptosis involves a mitochondria-associated apoptosis pathway.
For emergency contraceptive, the rapid delivery of levonorgestrel (LNG) to plasma is desirable, furthermore, a sustained delivery of LNG along with rapid absorption will be necessary. The pharmacokinetics and pharmacodynamics of LNG entrapped in different kinds of liposome formulations via nasal administration in rats were evaluated and compared with LNG suspension via the oral route. The relative bioavailabilities of these liposome formulations via nasal administration were 100% or higher than 100%. The C max and T max values of sterylglucoside (SG) and chitosancontained formulations by nasal administration were 416.84 ng/mL and 1.02 hr, 227.97 ng/mL and 2.02 hr, respectively, compared with that of 334.94 ng/mL and 1.89 hr of oral suspension. Fully 100% contraception was observed for all the formulations. SG could promote the absorption of LNG via the nasal route and may provide a rapid onset of action of LNG for emergency contraception. Chitosan could retain LNG in the nasal cavity for long contact time to sustain delivery of LNG. The rapid onset and sustained delivery of LNG can be achieved via the nasal route using liposomes as the vehicle.
The aim of our study was to clarify the apoptosis pathway induced by aloe emodin, an hydroxyanthraquinone present in aloe vera leaves, in rat hepatic stellate cells transformed by simian virus 40 (t-HSC/Cl-6), which retain the features of activated rat stellate cells. Apoptosis was determined by DNA fragmentation, caspase activity assay and western blotting analysis. Treatment of t-HSC/Cl-6 cells with 12.5, 25, or 50 mM aloe emodin inhibited t-HSC/Cl-6 cell viability in a dose-and time-dependent manner. The induction of apoptosis by aloe emodin was confirmed by typical DNA ladder formation and annexin v-propidium iodide flow-cytometric analysis. Aloe emodin treatment of t-HSC/Cl-6 cells caused activation of caspase-3 and caspase-9, detected with a caspase activity assay, although no change was observed in caspase-8 activity. Western blotting showed caspase-3 and caspase-9 active forms and the subsequent proteolytic cleavage of poly(ADP-ribose) polymerase. Aloe emodin induced mitochondrial membrane depolarization. Our data also show that cytochrome c increased in the cytosol but decreased in the mitochondria in a time-dependent manner. Increased Bax and unchanged Bcl-2 levels resulted in an increased Bax/Bcl-2 ratio. Thus, our research provides evidence that aloe emodininduced apoptosis involves a mitochondria-associated apoptosis pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.