The genetic material of all retroviruses examined so far consists of two identical RNA molecules joined at their 5' ends by the dimer linkage structure (DLS). Since the precise location of the DLS as well as the mechanism and role(s) of RNA dimerization remain unclear, we analyzed the dimerization process of Moloney murine leukemia virus (MoMuLV) genomic RNA. For this purpose we derived an in vitro model for RNA dimerization. By using this model, murine leukemia virus RNA was shown to form dimeric molecules. Deletion mutagenesis in the 620-nucleotide leader of MoMuLV RNA showed that the dimer promoting sequences are located within the encapsidation element Psi between positions 215 and 420. Furthermore, hybridization assays in which DNA oligomers were used to probe monomer and dimer forms of MoMuLV RNA indicated that the DLS probably maps between positions 280 and 330 from the RNA 5' end. Also, retroviral nucleocapsid protein was shown to catalyze dimerization of MoMuLV RNA and to be tightly bound to genomic dimer RNA in virions. These results suggest that MoMuLV RNA dimerization and encapsidation are probably controlled by the same cis element, Psi, and transacting factor, nucleocapsid protein, and thus might be linked during virion formation. Cells infected with Moloney murine leukemia virus (Mo-MuLV) produce three major size classes of virus-specific RNAs that are the 22S, 35S, and 70S RNAs (5). Most of the 22S and 35S RNA is found in free cytoplasm, while most of the 70S RNA is in the membrane-bound fraction (9). The MoMuLV 22S RNA is the messenger for the Pr85env precursor and is not found in virions. The 35S RNA is the genome-length RNA of 8,332 nucleotides (nt) which assumes two functions: it is the messenger RNA for the Pr659'9 and
The dry roots of
Polygonum multiflorum
(PM), involving both the raw and processed materials, are widely used as the traditional Chinese medicine for treating various diseases in China. Hepatotoxicity has been occasionally reported in patients who consume PM. Unfortunately, no definite criteria are currently available regarding the processing technology of PM for reduction the toxicity. In this work, we aimed to investigate the variations of PM metabolite profiles induced by different processing technologies by UHPLC/Q-Orbitrap-MS and multivariate statistical analysis, and to discover the potential toxic compounds by correlating the cytotoxicity of L02 cell with the contents of metabolites in raw and processed PM samples. We could identify two potential toxic compounds, emodin-8-
O
-glucoside and torachrysone-
O
-hexose, which could be selected as the toxic markers to evaluate different processing methods. The results indicated all processed PM samples could decrease the cytotoxicity on L02 cell. The best processing technology for PM process was to steam PM in black soybean decoction (BD-PM) for 24 h.
The complement anaphylatoxins C5a and C3a are released at the inflammatory site, where they contribute to the recruitment and activation of leukocytes and the activation of resident cells. The distribution of the receptor for C5a (C5aR) has been well studied; however, the receptor for C3a (C3aR) has only recently been cloned, and its distribution is uncharacterized. Using a specific affinity-purified anti-C3aR peptide Ab and oligonucleotides for reverse transcriptase-PCR analysis, C3aR expression was characterized in vitro on myeloid and nonmyeloid cells and in vivo in the brain. C3aR was expressed by adult astrocytes, astrocyte cell lines, monocyte lines THP1 and U937, neutrophils, and monocytes, but not by K562 or Ramos. C3aR staining was confirmed by flow cytometry, confocal imaging, and electron microscopy analysis. A 65-kDa protein was immunoprecipitated by the anti-C3aR from astrocyte and monocyte cell lysates. Our results at the protein level were confirmed at the mRNA level. Using reverse transcriptase-PCR, Southern blot, and sequencing we found that C3aR mRNA was expressed by fetal astrocytes, astrocyte cell lines, and THP1, but not by K562 or Ramos. The astrocyte C3aR cDNA was identical with the reported C3aR cDNA. C3aR expression was not detected in normal brain sections. However, a strong C3aR staining was evident in areas of inflammation in multiple sclerosis and bacterial meningitis. In meningitis, C3aR was abundantly expressed by reactive astrocytes, microglia, and infiltrating cells (macrophages and neutrophils). In multiple sclerosis, infiltrating lymphocytes did not express C3aR, but a strong staining was detected on smooth muscle cells (pericytes) surrounding blood vessels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.