Avian leukosis virus subgroup J (ALV-J) is a retroviruses that induces neoplasia, hepatomegaly, immunosuppression and poor performance in chickens. The tumorigenic and pathogenic mechanisms of ALV-J remain a hot topic. To explore anti-tumor genes that promote resistance to ALV-J infection in chickens, we bred ALV-J resistant and susceptible chickens (F3 generation). RNA-sequencing (RNA-Seq) of liver tissue from the ALV-J resistant and susceptible chickens identified 216 differentially expressed genes; 88 of those genes were up-regulated in the ALV-J resistant chickens (compared to the susceptible ones). We screened for significantly up-regulated genes (P < 0.01) of interest in the ALV-J resistant chickens, based on their involvement in biological signaling pathways. Functional analyses showed that overexpression of GADD45β inhibited ALV-J replication. GADD45β could enhance defense against ALV-J infection and may be used as a molecular marker to identify ALV-J infections.
Avian encephalomyelitis virus (AEV) causes typical neurological symptoms in young chicks and a transient drop in egg production and hatchability in adult laying birds, resulting in huge economic losses in the poultry industry. An effective way to control and prevent this disease is vaccination of the flocks. Here, we assessed the efficacy of the live vaccine candidate strain GDt29 against avian encephalomyelitis virus. The GDt29 strain has low virulence, was confirmed safe, and showed no signs of pathogenicity. High titers of AEV-specific antibodies were detected in GDt29-vaccinated hens (S/P > 3.0) and their progeny (S/P > 2.0). Moreover, the eggs of GDt29-vaccinated hens with high levels of maternal antibodies were hatched successfully regardless of challenge with a heterologous AEV strain, and the GDt29 attenuated vaccine showed higher protective efficacy against AEV than the commercial vaccine. Furthermore, contact-exposed chicks bred with GDt29-vaccinated birds generated high titers against AE virus (S/P > 2.8). Collectively, our studies are proof of the principle that GDt29 might be an ideal vaccine candidate to prevent AEV infection, and they highlight the utility of using a live vaccine against AEV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.