The transition from ICE to BEV taxis is one of the most important methods for reducing fossil fuel consumption and air pollution in cities such as Bangkok. To support this transition, an adequate number of charging stations to cover each area of charging demand must be established. This paper presents a data-driven process for determining suitable charging locations for BEV taxis based on their characteristic driving patterns. The location selection process employs GPS trajectory data collected from taxis and the locations of candidate sites. Suitable locations are determined based on estimated travel times and charging demands. A queueing model is used to simulate charging activities and identify an appropriate number of chargers at each station. The location selection results are validated using data from existing charging services. The validation results show that the proposed process can recommend better locations for charging stations than current practices. By using the traveling time data that take the current traffic condition into account, e.g., via Google Maps API, we can minimize the overall travel time to charging stations of the taxi fleet better than using the distance data. This process can also be applied to other cities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.