Activated carbons with large adsorption capacity and high mesopore fraction were obtained from rice straw by a combination of pre-pyrolysis and NaOH activation procedures. The experiments varied the prepyrolysis procedure, impregnation ratio of activating agent, and activation temperature. Samples were examined by inductively coupled plasmamass spectrometry (ICP-MS), X-ray diffractometry (XRD), field-emission scanning-electronic microscopy (FE-SEM), thermogravimetric analysis (TGA), and N2-adsorption analysis. The surface area and pore characteristics of the activated carbons were investigated by the Brunauer, Emmett, Teller (BET) method, Dubinin-Raduch (DR) model, and the t-plot method. The surface area, pore volume, and iodine adsorption capacity of the samples increased with increasing activation temperature and the impregnation ratio of the activating agent. A maximum surface area of 2093 m 2 /g was obtained at the activation temperature of 900 °C. The pore structure in the one-stage activation procedure was mainly microporous. Two-stage activation procedure efficiently enhanced mesopore volume, and therefore further increased the adsorption capacity of activated carbons. NaOH acted as both the activating agent in the reaction and as the cleaner to remove the ash. The results of this experiment will be useful in developing resource recovery systems from agricultural biomass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.