Background:Five-year survival after resection of colorectal cancer liver metastasis (CRLCM) is <30%. We recently found that aurora kinase A (AURKA) drives 20q gain-associated tumour progression and is associated with disease recurrence. This study evaluates the prognostic value of AURKA expression in CRCLM of patients who underwent liver resection.Methods:Tissue microarrays (TMAs) were generated using formalin-fixed paraffin-embedded CRCLM and matched primary tumour from a multi-institutional cohort of patients with CRCLM who underwent liver resection between 1990 and 2010. Tissue microarrays were stained for AURKA using immunohistochemistry, and a hazard rate ratio (HRR) for the association between overall survival (OS) and nuclear AURKA expression in CRCLM was calculated. Results were validated by 500-fold cross-validation.Results:The expression of AURKA was evaluated in CRCLM of 343 patients. High AURKA expression was associated with poor OS (HRR 1.55, P<0.01), with a cross-validated average HRR of 1.57 (P=0.02). Average HRR was adjusted for the established prognostic clinicopathological variables in a multivariate analysis (average HRR 1.66; P=0.02). The expression of AURKA in CRCLM was correlated to its expression in corresponding primary tumour (P<0.01).Conclusion:The expression of AURKA protein is a molecular biomarker with prognostic value for patients with CRCLM, independent of established clinicopathological variables.
These data indicate that low expression of LMNA is associated with an increased disease recurrence in stage II and III colon cancer patients, and suggest that these patients in particular may benefit from adjuvant chemotherapy.
Purpose. To investigate the prognostic value of multiple cell cycle-associated proteins in a large series of stage II and III colon cancers. Methods. From formalin-fixed, paraffin-embedded tumor samples of 386 patients with stage II and III colon cancer, DNA was isolated and tissue microarrays were constructed. Tissue microarray slides were immunohistochemically stained for p21, p27, p53, epidermal growth factor receptor, Her2/Neu, b-catenin, cyclin D1, Ki-67, thymidylate synthase, and Aurora kinase A (AURKA). Polymerase chain reaction-based microsatellite instability analysis was performed to allow for stratification of protein expression by microsatellite instability status. Results. Overall, low p21, high p53, low cyclin D1, and high AURKA expression were significantly associated with recurrence (P = 0.01, P \ 0.01, P = 0.04, and P \ 0.01, respectively). In stage II patients who did not receive adjuvant chemotherapy (n = 190), significantly more recurrences were observed in case of low-p21 and highp53-expressing tumors (P \ 0.01 and P = 0.03, respectively). In stage III patients who did not receive chemotherapy, high p53 expression was associated with recurrence (P = 0.02), and in patients who received chemotherapy, high AURKA expression was associated with relapse (P \ 0.01). In patients with microsatellite stable tumors, high levels of p53 and AURKA were associated with recurrence (P = 0.01 and P \ 0.01, respectively). Multivariate analysis showed p21 (odds ratio 1.6, 95% confidence interval 0.9-2.8) and AURKA (odds ratio 2.7, 95% confidence interval 1.3-5.6) to be independently associated with disease recurrence. Conclusions. p21, p53, cyclin D1, and AURKA could possibly be used as prognostic markers to identify colon cancer patients with high risk of disease recurrence.
Consensus molecular subtyping is an RNA expression‐based classification system for colorectal cancer (CRC). Genomic alterations accumulate during CRC pathogenesis, including the premalignant adenoma stage, leading to changes in RNA expression. Only a minority of adenomas progress to malignancies, a transition that is associated with specific DNA copy number aberrations or microsatellite instability (MSI). We aimed to investigate whether colorectal adenomas can already be stratified into consensus molecular subtype (CMS) classes, and whether specific CMS classes are related to the presence of specific DNA copy number aberrations associated with progression to malignancy. RNA sequencing was performed on 62 adenomas and 59 CRCs. MSI status was determined with polymerase chain reaction‐based methodology. DNA copy number was assessed by low‐coverage DNA sequencing (n = 30) or array‐comparative genomic hybridisation (n = 32). Adenomas were classified into CMS classes together with CRCs from the study cohort and from The Cancer Genome Atlas (n = 556), by use of the established CMS classifier. As a result, 54 of 62 (87%) adenomas were classified according to the CMS. The CMS3 ‘metabolic subtype’, which was least common among CRCs, was most prevalent among adenomas (n = 45; 73%). One of the two adenomas showing MSI was classified as CMS1 (2%), the ‘MSI immune’ subtype. Eight adenomas (13%) were classified as the ‘canonical’ CMS2. No adenomas were classified as the ‘mesenchymal’ CMS4, consistent with the fact that adenomas lack invasion‐associated stroma. The distribution of the CMS classes among adenomas was confirmed in an independent series. CMS3 was enriched with adenomas at low risk of progressing to CRC, whereas relatively more high‐risk adenomas were observed in CMS2. We conclude that adenomas can be stratified into the CMS classes. Considering that CMS1 and CMS2 expression signatures may mark adenomas at increased risk of progression, the distribution of the CMS classes among adenomas is consistent with the proportion of adenomas expected to progress to CRC. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Colorectal adenomas form a biologically and clinically distinct intermediate stage in development of colorectal cancer (CRC) from normal colon epithelium. Only 5% of adenomas progress into adenocarcinomas, indicating that malignant transformation requires other biological alterations than those involved in adenoma formation. The present study aimed to explore which cancer-related biological processes are affected during colorectal adenoma-to-carcinoma progression and to identify key genes within these pathways that can serve as tumor markers for malignant transformation. The activity of 12 cancer-related biological processes was compared between 37 colorectal adenomas and 31 adenocarcinomas, using the pathway analysis tool Gene Set Enrichment Analysis. Expression of six gene sets was significantly increased in CRCs compared to adenomas, representing chromosomal instability, proliferation, differentiation, invasion, stroma activation, and angiogenesis. In addition, 18 key genes were identified for these processes based on their significantly increased expression levels. For AURKA and PDGFRB, increased mRNA expression levels were verified at the protein level by immunohistochemical analysis of a series of adenomas and CRCs. This study revealed cancer-related biological processes whose activities are increased during malignant transformation and identified key genes which may be used as tumor markers to improve molecular characterization of colorectal tumors.Electronic supplementary materialThe online version of this article (doi:10.1007/s13277-009-0012-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.