The EACVI/ASE/Industry Task Force to standardize deformation imaging prepared this consensus document to standardize definitions and techniques for using two-dimensional (2D) speckle tracking echocardiography (STE) to assess left atrial, right ventricular, and right atrial myocardial deformation. This document is intended for both the technical engineering community and the clinical community at large to provide guidance on selecting the functional parameters to measure and how to measure them using 2D STE.This document aims to represent a significant step forward in the collaboration between the scientific societies and the industry since technical specifications of the software packages designed to post-process echocardiographic datasets have been agreed and shared before their actual development. Hopefully, this will lead to more clinically oriented software packages which will be better tailored to clinical needs and will allow industry to save time and resources in their development.
Background: Identification of reliable outcome predictors in coronavirus disease 2019 (COVID-19) is of paramount importance for improving patient's management. Methods: A systematic review of literature was conducted until 24 April 2020. From 6843 articles, 49 studies were selected for a pooled assessment; cumulative statistics for age and sex were retrieved in 587 790 and 602 234 cases. Two endpoints were defined: (a) a composite outcome including death, severe presentation, hospitalization in the intensive care unit (ICU) and/or mechanical ventilation; and (b) in-hospital mortality. We extracted numeric data on patients' characteristics and cases with adverse outcomes and employed inverse variance random-effects models to derive pooled estimates. Results: We identified 18 and 12 factors associated with the composite endpoint and death, respectively. Among those, a history of CVD (odds ratio (OR) = 3.15, 95% confidence intervals (CIs) 2.26-4.41), acute cardiac (OR = 10.58, 5.00-22.40) or kidney (OR = 5.13, 1.78-14.83) injury, increased procalcitonin (OR = 4.8, 2.034-11.31) or D-dimer (OR = 3.7, 1.74-7.89), and thrombocytopenia (OR = 6.23, 1.031-37.67) conveyed the highest odds for the adverse composite endpoint. Advanced age, male 2 of 15 | FIGLIOZZI et aL.
Contrast echocardiography is widely used in cardiology. It is applied to improve image quality, reader confidence and reproducibility both for assessing left ventricular (LV) structure and function at rest and for assessing global and regional function in stress echocardiography. The use of contrast in echocardiography has now extended beyond cardiac structure and function assessment to evaluation of perfusion both of the myocardium and of the intracardiac structures. Safety of contrast agents have now been addressed in large patient population and these studies clearly established its excellent safety profile. This document, based on clinical trials, randomized and multicentre studies and published clinical experience, has established clear recommendations for the use of contrast in various clinical conditions with evidence-based protocols.
cardiac cine magnetic resonance imaging is the gold-standard for the assessment of cardiac function. Imaging accelerations have shown to enable 3D CINE with left ventricular (LV) coverage in a single breath-hold. However, 3D imaging remains limited to anisotropic resolution and long reconstruction times. Recently deep learning has shown promising results for computationally efficient reconstructions of highly accelerated 2D CINE imaging. In this work, we propose a novel 4D (3D + time) deep learning-based reconstruction network, termed 4D CINENet, for prospectively undersampled 3D Cartesian CINE imaging. CINENet is based on (3 + 1)D complex-valued spatio-temporal convolutions and multi-coil data processing. We trained and evaluated the proposed cinenet on in-house acquired 3D CINE data of 20 healthy subjects and 15 patients with suspected cardiovascular disease. The proposed cinenet network outperforms iterative reconstructions in visual image quality and contrast (+ 67% improvement). We found good agreement in LV function (bias ± 95% confidence) in terms of end-systolic volume (0 ± 3.3 ml), end-diastolic volume (− 0.4 ± 2.0 ml) and ejection fraction (0.1 ± 3.2%) compared to clinical gold-standard 2D CINE, enabling single breath-hold isotropic 3D CINE in less than 10 s scan and ~ 5 s reconstruction time. Cardiac CINE magnetic resonance imaging (MRI) is the gold standard for the assessment of cardiac morphology and function. Conventionally, multi-slice 2D CINE imaging is performed under multiple breath-holds to achieve left ventricular (LV) coverage. For fast LV coverage only a few (~ 12) short-axis 2D slices with anisotropic resolution in the slice direction are acquired throughout multiple breath-holds of < 15 s duration each. Imperfect (e.g. drifts) or varying breath-hold positions and the anisotropic image resolution can cause slice misalignments which may lead to staircasing artifacts and erroneous assessment of the ventricular volume. The LV function assessment is assessed by epicardial and endocardial segmentation of the images in short-axis orientation. Indeed, the anisotropic resolution of the short-axis 2D CINE does not allow for reformats to arbitrary orientations. Further images in other long axis orientations are required for a comprehensive assessment of cardiac morphology and function which in turn requires multiple acquisitions to be performed in several geometric views and thereby increasing overall planning and scan time. To overcome these limitations, 2D 1,2 and 3D 3-5 free-breathing cardiac CINE imaging with retrospective motion correction have been proposed to minimize slice misalignment and improve patient comfort. Data are acquired under free-breathing and respiratory and cardiac motion is resolved retrospectively which comes however at the expense of a prolonged scan time in the order of several minutes. Moreover, these approaches usually require long reconstruction times associated with the high-dimensional (spatial, respiratory temporal and cardiac temporal) data processing or with the nat...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.