We investigated the interaction between the corticostriatal glutamatergic afferents and dopamine D1-like and D2-like receptors in the dorsomedial striatum (dm-STR) in attention and executive response control in the five-choice serial reaction time (5-CSRT) task. The competitive NMDA receptor antagonist 3-(R)-2-carboxypiperazin-4-propyl-1-phosphonic acid (CPP) injected in the mPFC impaired accuracy and increased premature and perseverative responding, raising GLU, DA, and GABA release in the dm-STR. The D1-like antagonist SCH23390 injected in the dm-STR reversed the CPP-induced accuracy deficit but did not affect the increase in perseverative responding. In contrast, the D2-like antagonist haloperidol injected in the dm-STR reduced the CPP-induced increase in perseverative responding but not the accuracy deficit. The different roles of dorsal striatal D1-like and D2-like receptor were further supported by the finding that activation of D1-like receptor in the dm-STR by SKF38393 impaired accuracy but not perseverative responding while the D2-like agonist quinpirole injected in the dm-STR increased perseverative responding but did not affect accuracy. These findings suggest that integration of cortical information by D1-like receptors in the dm-STR is a key mechanism of the input selection process of attention while the integration of corticostriatal signals by D2-like receptors preserves the ability to switch from one act/response to the next in a complex motor sequence, thus providing for behavioral flexibility.
The data confirm that excessive GLU release in the mPFC is associated with attentional deficits. Thus, suppression of GLU release may be a target for the development of novel antipsychotic drugs with greater effect on some aspects of cognitive deficits.
The cyclic-adenosine monophosphate response element-binding protein (CREB) family of transcription factors has been implicated in numerous forms of behavioral plasticity. We investigated CREB phosphorylation along some nodes of corticostriatal circuitry such as frontal cortex (FC) and dorsal (caudate–putamen, CPu) and ventral (nucleus accumbens, NAC) striatum in response to the contingent or non-contingent performance of the five-choice serial reaction time task (5-CSRTT) used to assess visuospatial attention. Three experimental manipulations were used; an attentional performance group (contingent, “master”), a group trained previously on the task but for whom the instrumental contingency coupling responding with stimulus detection and reward was abolished (non-contingent, “yoked”) and a control group matched for food deprivation and exposure to the test apparatus (untrained). Rats trained on the 5-CSRTT (both master and yoked) had higher levels of CREB protein in the FC, CPu, and NAC compared to untrained controls. Despite the divergent behavior of “master” and “yoked” rats CREB activity in the FC was not substantially different. In rats performing the 5-CSRTT (“master”), CREB activity was completely abolished in the CPu whereas in the NAC it remained unchanged. In contrast, CREB phosphorylation in CPu and NAC increased only when the contingency changed from goal-dependent to goal-independent reinforcement (“yoked”). The present results indicate that up-regulation of CREB protein expression across cortical and striatal regions possibly reflects the extensive instrumental learning and performance whereas increased CREB activity in striatal regions may signal the unexpected change in the relationship between instrumental action and reinforcement.
Variants of tryptophan hydroxylase-2 (Tph2), the gene encoding enzyme responsible for the synthesis of brain serotonin (5-HT), have been associated with neuropsychiatric disorders, substance abuse and addiction. This study assessed the effect of Tph2 gene deletion on motor behavior and found that motor activity induced by 2.5 and 5 mg/kg amphetamine was enhanced in Tph2 À/À mice. Using the in vivo microdialysis technique we found that the ability of amphetamine to stimulate noradrenaline (NA) release in the striatum was reduced by about 50% in Tph2 À/À mice while the release of dopamine (DA)was not affected. Tph2 deletion did not affect the release of NA and DA in the prefrontal cortex. The role of endogenous 5-HT in enhancing the effect of amphetamine was confirmed showing that treatment with the 5-HT precursor 5-hydroxytryptophan (10 mg/kg) restored tissue and extracellular levels of brain 5-HT and the effects of amphetamine on striatal NA release and motor activity in Tph2 À/À mice. Treatment with the NA precursor dihydroxyphenylserine (400 mg/kg) was sufficient to restore the effect of amphetamine on striatal NA release and motor activity in Tph2 À/À mice. These findings indicate that amphetamineinduced hyperactivity is attenuated by endogenous 5-HT through the inhibition of striatal NA release. Tph2 À/À mice may be a useful preclinical model to assess the role of 5-HTdependent mechanisms in the action of psychostimulants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.