Functional neuroimaging research in the non-human primate (NHP) has been advancing at a remarkable rate. The increase in available data establishes a need for robust analysis pipelines designed for NHP neuroimaging and accompanying template spaces to standardize the localization of neuroimaging results. Our group recently developed the NIMH Macaque Template (NMT), a high-resolution population average anatomical template and associated neuroimaging resources, providing researchers with a standard space for macaque neuroimaging (Seidlitz, Sponheim et al., 2018). Here, we release NMT v2, which includes both symmetric and asymmetric templates in stereotaxic orientation, with improvements in spatial contrast, processing efficiency, and segmentation. We also introduce the Cortical Hierarchy Atlas of the Rhesus Macaque (CHARM), a hierarchical parcellation of the macaque cerebral cortex with varying degrees of detail. These tools have been integrated into the neuroimaging analysis software AFNI (Cox, 1996) to provide a comprehensive and robust pipeline for fMRI processing, visualization and analysis of NHP data. AFNI’s new @animal_warper program can be used to efficiently align anatomical scans to the NMT v2 space, and afni_proc.py integrates these results with full fMRI processing using macaque-specific parameters: from motion correction through regression modeling. Taken together, the NMT v2 and AFNI represent an all-in-one package for macaque functional neuroimaging analysis, as demonstrated with available demos for both task and resting state fMRI.HighlightsThe NMT v2, a stereotaxically aligned symmetric macaque template, is introduced.A new atlas (CHARM), defined on NMT v2, parcellates the cortex at six spatial scales.AFNI’s @animal_warper aligns and maps data between monkey anatomicals and templates.AFNI’s afni_proc.py facilitates monkey fMRI analysis with automated scripting and QC.Demos of macaque task and resting state fMRI analysis with these tools are provided.
Two new chemosensors, rhodamine B derivative bearing 3-formyl-6-nitrochromone (L 1) and 3formyl-6-methylchromone (L 2) units were designed and synthesized using microwave irradiation for the selective detection of Cu 2+ in aqueous media. Copper triggers the formation of highly fluorescent ring-open spirolactam. The fluorescence intensity was remarkably increased upon the addition of Cu 2+ within a minute, while the other metal ions caused no significant effect. More importantly, the resulting complexes can be used as a reversible fluorescence sensor for CN −. The recognition ability of the sensors was investigated by fluorescence titration, Job's plot, 1 H NMR spectroscopy and density functional theory (DFT) calculations.
Neurons coordinate their activity to produce an astonishing variety of motor behaviors. Our present understanding of motor control has grown rapidly thanks to new methods for recording and analyzing populations of many individual neurons over time. In contrast, current methods for recording the nervous system`s actual motor output - the activation of muscle fibers by motor neurons - typically cannot detect the individual electrical events produced by muscle fibers during natural behaviors and scale poorly across species and muscle groups. Here we present a novel class of electrode devices (''Myomatrix arrays'') that record muscle activity at cellular resolution across muscles and behaviors. High-density, flexible electrode arrays allow for stable recordings from the muscle fibers activated by a single motor neuron, called a ''motor unit'', during natural behaviors in many species, including mice, rats, primates, songbirds, frogs, and insects. This technology therefore allows the nervous system's motor output to be monitored in unprecedented detail during complex behaviors across species and muscle morphologies. We anticipate that this technology will allow rapid advances in understanding the neural control of behavior and in identifying pathologies of the motor system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.