Two paroxysmal explosions occurred at Stromboli volcano in the Summer 2019, the first of which, on July 3, caused one fatality and some injuries. Within the 56 days between the two paroxysmal explosions, effusive activity from vents located in the summit area of the volcano occurred. No significant changes in routinely monitored parameters were detected before the paroxysmal explosions. However, we have calculated the polarization and the fractal dimension time series of the seismic signals from November 15, 2018 to September 15, 2019 and we have recognized variations that preceded the paroxysmal activity. In addition, we have defined a new parameter, based on RSAM estimation, related to the Very Long Period events, called VLP size, by means of which we have noticed significant variations through the whole month preceding the paroxysm of July 3. In the short term, we have analyzed the signals of a borehole strainmeter installed on the island, obtaining automatic triggers 10 minutes and 7.5 minutes before the July 3 and the August 28 paroxysms, respectively. The results of this study highlight mid-term seismic precursors of paroxysmal activity and provide valuable evidence for the development of an early warning system for paroxysmal explosions based on strainmeter measurements. Stromboli (Aeolian Archipelago, Italy) is an open conduit volcano with persistent explosive activity. It is located in the Mediterranean Sea, not far from the coasts of Sicily and Calabria (Fig. 1). The persistent explosive Strombolian activity consists of several hundred of moderate-intensity events per day. Typical Strombolian explosions eject pyroclastic fragments at the height of some tens of meters, which fall a short distance from the eruptive vent. Explosions occur in numerous eruptive vents located in the summit area of the volcano that can change over time both in number and position. However, the eruptive vents can be grouped into three areas (Fig. 1), northeast (NE), central (C) and southwest (SW), and are distributed along the dominant structural direction (NE-SW) of a graben-like collapsed area at the top of the volcanic edifice 1-3. Major explosions 4,5 eject pyroclastic material over a hundred meters high, which can fall outside the crater terrace in the area visited by tourists. The frequency of these phenomena varies in time, with an average of 2 events per year 5-7. Paroxysms, violent explosions that produce eruptive columns more than 3 km high and are often accompanied by pyroclastic flows, can also occur at Stromboli 8-13. Ballistic blocks associated with these explosions can reach up to 2 m in diameter. Strombolian paroxysms are rare and their occurrence frequency varies over time.
Sources responsible for volcanic unrest produce characteristic surface deformation. Given a sufficient number of distributed observation points, inversion is the preferred procedure for retrieving the source parameters of location and volume or pressure change. Most often the solutions have been for point sources embedded in a homogeneous half‐space. Recent work indicates that layered structures, particularly those with soft superficial layers, significantly perturb the deformation pattern compared with that for the homogeneous medium. We apply the methods of L. Crescentini and A. Amoruso to data for the most recent mini‐uplift in the Campi Flegrei caldera and show that models using a homogeneous medium cannot adequately fit all the data. Incorporating a layered structure appropriate for Campi Flegrei allows a significantly better fit, avoiding characteristic discrepancies which are revealed by a synthetic test. Failure to use such structure results in incorrect source parameters, possibly leading to misleading geophysical interpretations.
After a period of mild eruptive activity, Stromboli showed between 2017 and 2018 a reawakening phase, with an increase in the eruptive activity starting in May 2017. The alert level of the volcano was raised from “green” (base) to “yellow” (attention) on 7 December 2017, and a small lava overflowed the crater rim on 15 December 2017. Between July 2017 and August 2018 the monitoring networks recorded nine major explosions, which are a serious hazard for Stromboli because they affect the summit area, crowded by tourists. We studied the 2017–2018 eruptive phase through the analysis of multidisciplinary data comprising thermal video-camera images, seismic, geodetic and geochemical data. We focused on the major explosion mechanism analyzing the well-recorded 1 December 2017 major explosion as a case study. We found that the 2017–2018 eruptive phase is consistent with a greater gas-rich magma supply in the shallow system. Furthermore, through the analysis of the case study major explosion, we identified precursory phases in the strainmeter and seismic data occurring 77 and 38 s before the explosive jet reached the eruptive vent, respectively. On the basis of these short-term precursors, we propose an automatic timely alarm system for major explosions at Stromboli volcano.
In the last decades, Mt. Stromboli produced four vulcanian eruptions, in 2003 and 2007 and July and August 2019, recorded by INGV monitoring network. Specifically, last three events are studied through records from borehole strainmeters, which allow to infer details on source dynamics. These events are preceded by a slow strain buildup, starting several minutes before the paroxysms, which can be used in future for early warning. Eruptions consist of two or more strain pulses, with oscillations ranging from several seconds, as in 2007, to some minutes, as in 2019, and lasting from several minutes to 1 hr after the explosions. Plain Language Summary Sacks-Evertson borehole dilatometers are a special kind of strainmeter, capable of recording volumetric strain changes. In the current manuscript, data recorded by such an instrument reveal that strain changes occurred several minutes before two paroxysmal events occurred in the summer of 2019 at Stromboli, an open-conduit volcano located in Eolian Islands, Italy. A comparison of 2019 paroxysms has been made with previous eruptions at Stromboli volcano: Similarities among the explosions suggest a common source mechanism. Starting from these observations, a real-time early warning system could be developed in the future, allowing Italian Civil Protection Department to set up automated (or semi-automated) variable alert levels, which could trigger alarms accordingly. Such an early warning system could then be used to provide alerts for other similar open-conduit volcanoes.
In July and August 2019, Stromboli volcano underwent two dangerous paroxysms previously considered “unexpected” because of the absence of significant changes in usually monitored parameters. We applied a multidisciplinary approach to search for signals able to indicate the possibility of larger explosive activity and to devise a model to explain the observed variations. We analysed geodetic data, satellite thermal data, images from remote cameras and seismic data in a timespan crossing the eruptive period of 2019 to identify precursors of the two paroxysms on a medium-term time span (months) and to perform an in-depth analysis of the signals recorded on a short time scale (hours, minutes) before the paroxysm. We developed a model that explains the observations. We call the model “push and go” where the uppermost feeding system of Stromboli is made up of a lower section occupied by a low viscosity, low density magma that is largely composed of gases and a shallower section occupied by the accumulated melt. We hypothesize that the paroxysms are triggered when an overpressure in the lower section is built up; the explosion will occur at the very moment such overpressure overcomes the confining pressure of the highly viscous magma above it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.